
The Preliminary Guides to the MegaWave2 Software, Versions 2.x

Volume Two

MegaWave2 System Library

by Jacques Froment

Copyright c© CMLA
Ecole Normale Supérieure de Cachan

61 avenue du Président Wilson
94235 Cachan cedex, France

All Rights Reserved

May 5, 2004

http://www.cmla.ens-cachan.fr/Cmla/Megawave

Contents MegaWave2 System Library Contents 2

Contents

1 Introduction 6
1.1 What you will find in this guide . 6
1.2 The MegaWave2 memory (internal) types . 6
1.3 File (external) types or file formats . 7

1.3.1 Generalities . 7
1.3.2 Search path convention . 7

2 Images 8
2.1 Char Images . 8

2.1.1 The structure Cimage . 9
2.1.2 Related file (external) types . 9
2.1.3 Functions Summary . 10

2.2 Color Char Images . 22
2.2.1 The structure Ccimage . 22
2.2.2 Related file (external) types . 22
2.2.3 Functions Summary . 23

2.3 Float Images . 36
2.3.1 The structure Fimage . 36
2.3.2 Related file (external) types . 36
2.3.3 Functions Summary . 36

2.4 Color Float Images . 47
2.4.1 The structure Cfimage . 47
2.4.2 Related file (external) types . 48
2.4.3 Functions Summary . 48

3 Movies 61
3.1 Char movies . 61

3.1.1 The structure Cmovie . 61
3.1.2 Related file (external) types . 61
3.1.3 Functions Summary . 61

3.2 Color Char movies . 65
3.2.1 The structure Ccmovie . 65
3.2.2 Related file (external) types . 65
3.2.3 Functions Summary . 65

3.3 Float movies . 69
3.3.1 The structure Fmovie . 69
3.3.2 Related file (external) types . 69
3.3.3 Functions Summary . 69

3.4 Color Float movies . 73
3.4.1 The structure Cfmovie . 73
3.4.2 Related file (external) types . 73
3.4.3 Functions Summary . 73

4 Signals 77

Contents MegaWave2 System Library Contents 3

4.1 Float signals . 77
4.1.1 The structure Fsignal . 77
4.1.2 Related file (external) types . 77
4.1.3 Functions Summary . 78

5 Wavelets 85
5.1 One-dimensional wavelet . 85

5.1.1 The structure Wtrans1d . 85
5.1.2 Related file (external) types . 86
5.1.3 Functions Summary . 87

5.2 Two-dimensional wavelet . 98
5.2.1 The structure Wtrans2d . 98
5.2.2 Related file (external) types . 99
5.2.3 Functions Summary . 99

6 Geometrical structures : Point, Curves, Polygons and Lists 108
6.1 Point of a planar curve . 108

6.1.1 The structure Point curve . 108
6.1.2 Related file (external) types . 109
6.1.3 Functions Summary . 109

6.2 Planar curve . 114
6.2.1 The structure Curve . 114
6.2.2 Related file (external) types . 114
6.2.3 Functions Summary . 114

6.3 Set of planar curves . 120
6.3.1 The structure Curves . 120
6.3.2 Related file (external) types . 120
6.3.3 Functions Summary . 120

6.4 Polygon, a variant of curve . 126
6.4.1 The structure Polygon . 126
6.4.2 Related file (external) types . 126
6.4.3 Functions Summary . 126

6.5 Set of polygons . 132
6.5.1 The structure Polygons . 132
6.5.2 Related file (external) types . 132
6.5.3 Functions Summary . 132

6.6 Points, Curves and Polygons with real coordinates 137
6.7 Lists of n-tuple reals . 137

6.7.1 The structure Flist . 137
6.7.2 Related file (external) types . 138
6.7.3 Functions Summary . 138
6.7.4 The structure Flists . 146
6.7.5 Related file (external) types . 146
6.7.6 Functions Summary . 146
6.7.7 The structures Dlist and Dlists . 153
6.7.8 Related file (external) types . 153

Contents MegaWave2 System Library Contents 4

7 Level sets and morphological structures 154
7.1 Shape . 154

7.1.1 The structure Shape . 155
7.1.2 Related file (external) types . 155
7.1.3 Functions Summary . 155

7.2 Shapes . 164
7.2.1 The structure Shapes . 164
7.2.2 Related file (external) types . 164
7.2.3 Functions Summary . 164

7.3 Point with a type field . 169
7.3.1 The structure Point type . 169
7.3.2 Related file (external) types . 169
7.3.3 Functions Summary . 169

7.4 Horizontal segment . 174
7.4.1 The structure Hsegment . 174
7.4.2 Related file (external) types . 174
7.4.3 Functions Summary . 174

7.5 Morpho set . 178
7.5.1 The structure Morpho set . 178
7.5.2 Related file (external) types . 178
7.5.3 Functions Summary . 178

7.6 Chain of morpho sets . 184
7.6.1 The structure Morpho sets . 184
7.6.2 Related file (external) types . 184
7.6.3 Functions Summary . 184

7.7 Morpho line . 190
7.7.1 The structure Morpho line . 190
7.7.2 Related file (external) types . 190
7.7.3 Functions Summary . 190

7.8 Morpho line in the continuous plane . 196
7.8.1 The structure Fmorpho line . 196
7.8.2 Related file (external) types . 196
7.8.3 Functions Summary . 196

7.9 Morphological image . 196
7.9.1 The structure Mimage . 197
7.9.2 Related file (external) types . 197
7.9.3 Functions Summary . 197

8 Unstructured material or raw data 207
8.1 The structure Rawdata . 207
8.2 Related file (external) types . 207
8.3 Functions Summary . 207

9 Miscellaneous Features 213
9.1 Global System Variables . 213
9.2 Conversion between memory types . 213

Contents MegaWave2 System Library Contents 5

9.3 Miscellaneous System Functions . 215

10 Wdevice Library and window facilities 225
10.1 Functions Summary . 225

Index 226

Introduction MegaWave2 System Library Introduction 6

1 Introduction

1.1 What you will find in this guide

When you implement an algorithm in MegaWave2, you write a code in C language in what we
call a module (See Volume one: “MegaWave2 User’s Guide”). Your algorithm processes some
objects which represent your data. So you need to know how to create an object of the type
you want, how to access to it, how to remove it, etc.

This present guide will detail all the available MegaWave2 objects and most related functions
which are part of the System Library (Sections 2 to 8). In addition, you will find the description
of other functions which may be called by the user in the module - such as error handling
functions - (Section 9). There is also a description of the Wdevice Library, a toolbox for the
window interface (Section 10).

This guide is a reference manual : it would be boring to read it from the beginning to the
end. If you are new with MegaWave2, you should entirely read this introduction were basic
principles are explained, and all introductions of the next main sections, to get an idea about
the various objects you may use. Afterward, when you will be searching for a particular structure
or function, consult the contents page 2 or the index page 226.

1.2 The MegaWave2 memory (internal) types

MegaWave2 objects such as images, movies, signals, curves, . . . , are represented in the module
code as pointers to a structure. The type of the structure defines the object you want to process,
as struct fimage for an image of Floating points values (the pointer of this structure is of type
Fimage).

Each structure has particular fields, as gray for a Fimage which represents the gray levels plane.
They are described in the section presenting the structure (Section 2.3.1 page 36 for Fimage).

Some fields are common to most structures, they are:

• cmt : string of maximum size mw_cmtsize where to put the comment associated to the
object. For input objects and at the beginning of the module statement, this field contains
the comment field of the corresponding file object (if the file type provides a comment
field). For output objects and at the end of the module statement, this field contains the
name of the module plus the comments of the input objects, if any. This default output
value can be overwritten by setting a value to cmt.

• name : string of maximum size mw_namesize where to put the name of this object. For
input objects, this field contains the file name of the corresponding file object. The default
output value is “?”. It can be overwritten.

You can of course access to any field in order to read its content. But be carefull when you want
to overwrite the content of a field: some fields have to be updated by the system library only
(e.g. the dimension fields nrow and ncol of image objects).

Introduction MegaWave2 System Library Introduction 7

Some structures may contain undocumented fields: they are used internally by the system library
and users should not access to them, especially for writing.

Some conversions between memory types are available as functions of the System Library, see
Section 9.2 of this guide for a list of the most current conversion functions.

1.3 File (external) types or file formats

1.3.1 Generalities

When a module’s command finishes, the output objects (of memory types) have to be saved on
disk for future use. For example, they can be the input of another module’s command. Data
may be saved on disk also (or read from disk) when the module is run into an interpreter such
as XMegaWave2, although in this case modules communicate with memory type structures.

This shows that external type objects are needed; they are files written in a predefined format.
MegaWave2 can use some well-known formats available in the public domain, especially to carry
the different image memory types. When no satisfying standard is available to match a given
memory type, a specific format is used. Notice that, whereas there is only one memory type
associated to an object, an object of a given memory type may be represented on disk with
various file types.

Conversions between some formats are available: you may load an object written in a file type
which is different from the regular one used for the memory type of your object. Depending on
the case, you may however lose precision in your data (in that case, a warning message is send).
For output ojects, MegaWave2 chooses a default file type to write the data. You can modify
this choice using the system option -ftype (See Volume one: “MegaWave2 User’s Guide”).

A short description of the file types is given in the next sections about the different memory
types.

1.3.2 Search path convention

When a module is called in the command line mode, MegaWave2 searches the file names of the
input objects in different directories, following the order:

1. the current directory of the shell, i.e. “.”,

2. $MY_MEGAWAVE2/data and its subdirectories,

3. $MEGAWAVE2/data and its subdirectories.

Notice that this search path convention has changed from MegaWave2 Versions 1.x to Versions
2.x.

The output objects are always written in the current directory of the shell. Beware : if you give
the same name as the one of an existing file, the content of the previous file will be overwritten
(there is no confirmation message).

Images MegaWave2 System Library Images 8

2 Images

All image structures share the following important fields:

• nrow,ncol : define the size of the image, by the number of rows and the number of columns
(not to be overwritten by user). Notice that the range over the x axis is 0 . . . ncol− 1 and
that the range over the y axis is 0 . . . nrow− 1.

• previous, next : pointers to the previous and the next image. These fields are used only
when the image is part of a movie.

Each image structure has also one or several fields to record the pixel values. When the image is
monochrome, there is only one field called gray. Color images use three fields called red, green
and blue. The C type of these array fields depends to the image object: they can be pointers
to unsigned char values or pointers to floating points values.

You can put values in those arrays, at the expressed condition that you respect the C type of
the field and that you do not exceed the maximum value of the index, given by ncol× nrow− 1.
For example, image->gray[y*image->ncol+x] is the gray level of the pixel of coordinates (x, y)
that is, the column #x and the row #y. Ranges are 0 . . . nrow− 1 for y and 0 . . . ncol− 1 for x.

You can shorten this expression in your modules using C macro, for example:

#define _(a,i,j) ((a)->gray[(j)*(a)->ncol+(i)])

allows you to access to the pixel (x, y) by writing _(image,x,y).

Tip to speed your modules: images are built from left to right and up to down. If you can write your
algorithm to access to the pixel following this natural order, you can speed it considerably using the
following scheme. In this example, one copies each pixel of the cimage M into the fimage B only if the
pixel of M is not equal to zero:

Cimage M; /* Input of the module */

Fimage *B; /* Output of the module */

register float *ptrB;

register unsigned char *ptrM;

register int i;

for (i=0, ptrB = (*B)->gray, ptrM = M->gray;

i< M->ncol*M->nrow;

i++, ptrB++, ptrM++)

if (*ptrM) *ptrB = (float) *ptrM;

If you scan the pixels in a random order, you may rather define a bi-dimensional tab A so that A[l][c]

points to the pixel’s value (c,l). See the functions mw_newtab_cimage(), mw_newtab_fimage(), . . .

2.1 Char Images

Use preferably the Char Images memory type each time you can write an algorithm which directly
computes the gray level as an integer between 0 (black) and 255 (white) : such discrete scheme will be

Cimages MegaWave2 System Library Cimages 9

more accurate, faster and will require far less memory than a continuous scheme (i.e. with floating points
computations).

2.1.1 The structure Cimage

Beginners should only focus on the first three fields of this structure. You should also consider the fields
previous and next if your image is part of a movie. Some fields are not used this time, such firstcol

. . . lastrow, but future modules may access to them.

typedef struct cimage {

int nrow; /* Number of rows (dy) */

int ncol; /* Number of columns (dx) */

unsigned char *gray; /* The Gray level plane (may be NULL) */

float scale; /* Scale of the picture (should be 1 for original pict.) */

char cmt[mw_cmtsize]; /* Comments */

char name[mw_namesize]; /* Name of the image */

/* Defines the signifiant part of the picture : */

int firstcol; /* index of the first col not affected by left side effect*/

int lastcol; /* index of the last col not affected by right side effect*/

int firstrow; /* index of the first row not aff. by upper side effect */

int lastrow; /* index of the last row not aff. by lower side effect */

/* For use in Movies only */

struct cimage *previous; /* Pointer to the previous image (may be NULL) */

struct cimage *next; /* Pointer to the next image (may be NULL) */

} *Cimage;

Do not change by yourself the content of nrow and ncol: the size of the image has to be modified using
functions of the library only (see section 2.1.3 page 10).

2.1.2 Related file (external) types

The list of the available formats is the following:

1. "IMG" Original format defined by the defunct software PCVision (from ImageAction), and widely
used by MegaWave1. This format carries the comments field (cmt) of the memory object.

2. "TIFF" Tag Image Format with one 8-bits plane (unsigned char gray levels). This format carries
the comments field (cmt) of the memory object. It has been developed by Sam Leffler and Silicon
Graphics, Inc. To use this format, you need the TIFF library (libtiff). See the Volume One, section
“Installation”. Output objects are created without compression.

3. "PGMA" PGM (portable graymap file format) in Ascii version.

4. "PGMR" PGM (portable graymap file format) in Rawbits version.

5. "PM_C" PM format with one 8-bits plane (unsigned char gray levels). This format carries the com-
ments field (cmt) of the memory object. It has been developed by the University of Pennsylvania,
USA.

Cimages MegaWave2 System Library Cimages 10

6. "GIF" GIF87 (Graphics Interchange Format) 8-bits per pixel, non interlaced. This format has been
developed by CompuServe Incorporated.

7. "BMP" Microsoft BMP 8-bits per pixel. Output objects are created using Windows BMP format.
Compression methods are not implemented.

8. "JFIF" JPEG/JFIF format with one 8-bits plane (unsigned char gray levels). This format carries
the comments field (cmt) of the memory object. It has been developed by the Independent JPEG
Group’s software. To use this format, you need the JPEG library (libjpeg). See the Volume One,
section “Installation”. The compression ratio is defined by the quality factor, which is an integer
between 1 (worse) and 100 (best). Default quality factor is 100. To change this value, add it as
an option to the JFIF type. For example, JFIF:50 means JFIF file type with quality factor 50.
Whatever the quality factor, output objects are created with loosely compression.

9. "PS" PostScript (level 1) format, for output objects only. This format has been developed by Adobe
Systems Incorporated.

10. "EPSF" Encapsulated PostScript (level 1) format, for output objects only. Same as PS format
but more suitable when used with some softwares that recognize encapsulated comments, such as
LATEX.

11. "INR" Original format defined by the software Inrimage (from INRIA). This is a very old version,
implemented for backward-compatibility with MegaWave1, and it should not be used anymore.

12. "MTI" Original format defined by the software MultImage (from 2AI), and used by MegaWave1.
Quite exotic now.

13. "BIN" This is the “universal” image format for 8-bits gray levels images. It records one byte per
pixel, without header. Since it does not contain any header, the image file must be a square (i.e.
the number of columns and the number of lines must be the same).

2.1.3 Functions Summary

The following is a description of all the functions related to the Cimage type. The list is in alphabetical
order.

Cimages MegaWave2 System Library Cimages 11

©Name

mw alloc cimage - Allocate the gray plane

©Summary

Cimage mw alloc cimage(image,nrow,ncol)

Cimage image;

int nrow, ncol;

©Description

This function allocates the gray plane of a Cimage structure previously created using mw_new_cimage.
The size of the image is given by nrow (number of rows or maximum range of y plus one) and ncol

(number of columns or maximum range of x plus one). Pixels can be addressed after this call, if the
allocation successed. There is no default value for the pixels.

Do not use this function if image has already an allocated plane: use the function mw_change_cimage

instead.

The function mw_alloc_cimage returns NULL if not enough memory is available to allocate the gray plane.
Your code should check this return value to send an error message in the NULL case, and do appropriate
statement.

©Example

Cimage image=NULL; /* Internal use: no Input neither Output of module */

if (((image = mw_new_cimage()) == NULL) ||

(mw_alloc_cimage(image,256,256) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

/* Set pixel (0,1) to white */

image->gray[256] = 255;

Cimages MegaWave2 System Library Cimages 12

©Name

mw change cimage - Change the size of the gray plane

©Summary

Cimage mw change cimage(image, nrow, ncol)

Cimage image;

int nrow, ncol;

©Description

This function changes the memory allocation of the gray plane of a Cimage structure, even if no previously
memory allocation was done. The new size of the image is given by nrow (number of rows or maximum
range of y plus one) and ncol (number of columns or maximum range of x plus one).

It can also create the structure if the input image = NULL. Therefore, this function can replace both
mw_new_cimage and mw_alloc_cimage. It is the recommended function to set image dimension of in-
put/output modules. Since the function can set the address of image, the variable must be set to the
return value of the function (See example below).

The function mw_change_cimage returns NULL if not enough memory is available to allocate the gray
plane. Your code should check this return value to send an error message in the NULL case, and do
appropriate statement.

©Example

Cimage Output; /* Output of module */

Output = mw_change_cimage(Output, 256, 256);

if (Output == NULL) mwerror(FATAL,1,"Not enough memory.\n");

Cimages MegaWave2 System Library Cimages 13

©Name

mw clear cimage - Clear the gray plane

©Summary

void mw clear cimage(image, v)

Cimage image;

unsigned char v;

©Description

This function fills the cimage image with the gray value given by v: all pixels will have the gray level v.

The speed of this function depends to the C library implementation, but it is usually very fast (trying to
do faster is a waste of time).

©Example

Cimage image; /* Output of module */

image = mw_change_cimage(image, 100, 100);

if (image == NULL) mwerror(FATAL,1,"Not enough memory.\n");

/* Set all pixels to white */

mw_clear_cimage(image,255);

Cimages MegaWave2 System Library Cimages 14

©Name

mw copy cimage - Copy the pixel values of an image into another one

©Summary

void mw copy cimage(in, out)

Cimage in,out;

©Description

This function copies the content of the gray plane of the image in into the gray plane of the image out.
The size of the two gray planes must be the same.

The speed of this function depends to the C library implementation, but it is usually very fast (trying to
do faster is a waste of time).

©Example

Cimage G; /* Needed Input */

Cimage F; /* Optional Output */

if (F) {

printf("F option is active: copy G in F\n");

if ((F = mw_change_cimage(F, G->nrow, G->ncol)) == NULL)

mwerror(FATAL,1,"Not enough memory.\n");

else mw_copy_cimage(G, F);

}

else printf("F option is not active\n");

Cimages MegaWave2 System Library Cimages 15

©Name

mw delete cimage - Deallocate the gray plane

©Summary

void mw delete cimage(image)

Cimage image;

©Description

This function deallocates the gray plane of a Cimage structure previously allocated using mw_alloc_cimage
or mw_change_cimage, and the structure itself.

You should set image = NULL after this call since the address pointed by image is no longer valid.

©Example

Cimage image=NULL; /* Internal use: no Input neither Output of module */

if (((image = mw_new_cimage()) == NULL) ||

(mw_alloc_cimage(image,256,256) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

.

.

.

mw_delete_cimage(image);

image = NULL;

Cimages MegaWave2 System Library Cimages 16

©Name

mw draw cimage - Draw a line

©Summary

void mw draw cimage(image, a0, b0, a1, b1, c)

Cimage image;

int a0,b0,a1,b1; unsigned char c;

©Description

This function draws in image a connected line of gray level c between the pixel (a0, b0) and the pixel
(a1, b1).

©Example

Cimage image; /* Output of module */

image = mw_change_cimage(image, 100, 100);

if (image == NULL) mwerror(FATAL,1,"Not enough memory.\n");

/* Set all pixels to white */

mw_clear_cimage(image,255);

/* Draw a black diagonal line */

mw_draw_cimage(image,0,0,99,99,0);

Cimages MegaWave2 System Library Cimages 17

©Name

mw getdot cimage - Return the gray level value

©Summary

unsigned char mw getdot cimage(image, x, y)

Cimage image;

int x,y;

©Description

This function returns the gray level value (a number between 0 - black - and 255 - white -) of the given
image for the pixel (x, y) (column #x and row #y).

Notice that a call to this function is a slow (but easy and secure) way to read a pixel value. See section 2
page 8 for how to read pixels fast.

©Example

Cimage image; /* Needed Input of module */

int x,y; /* Needed Inputs of module */

if ((x < image->ncol) && (y < image->nrow))

printf("image(%d,%d) = %d\n",x,y,mw_getdot_cimage(image,x,y));

else mwerror(ERROR,1,"Out of bounds !\n");

Cimages MegaWave2 System Library Cimages 18

©Name

mw isitbinary cimage - Check if the image is binary

©Summary

unsigned char mw isitbinary cimage(image)

Cimage image;

©Description

This function returns 0 if image is not a binary image, a value > 0 if it is one. In that case, the returned
value corresponds to the maxima value that is, to the only one value 6= 0. Image with two gray levels
only but with the minimal value > 0 is not considered by this function as binary.

©Example

Cimage image; /* Needed Input of module */

unsigned char white;

if ((white=mw_isitbinary_cimage(image)) > 0)

printf("Binary image with white set to %d\n",(int) white);

else

printf("Not a binary image\n");

Cimages MegaWave2 System Library Cimages 19

©Name

mw new cimage - Create a new Cimage

©Summary

Cimage mw new cimage();

©Description

This function creates a new Cimage structure with an empty gray plane. No pixels can be addressed at
this time. The gray plane may be allocated using the function mw_alloc_cimage or mw_change_cimage.

Do not use this function for input/output of modules, since the MegaWave2 Compiler already created the
structure for you if you need it (See Volume one: “MegaWave2 User’s Guide”). Use instead the function
mw_change_cimage. Do not forget to deallocate the internal structures before the end of the module,
except if they are part of an input or output movie.

The function mw_new_cimage returns NULL if not enough memory is available to create the structure. Your
code should check this value to send an error message in the NULL case, and do appropriate statement.

©Example

Cimage image=NULL; /* Internal use: no Input neither Output of module */

if (((image = mw_new_cimage()) == NULL) ||

(mw_alloc_cimage(image,256,256) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

Cimages MegaWave2 System Library Cimages 20

©Name

mw newtab gray cimage - Create a bi-dimensional tab for the pixels of a Cimage

©Summary

unsigned char ** mw newtab gray cimage(image)

Cimage image;

©Description

This function creates a new bi-dimensional tab which allows an easy and fast access to the pixels’ gray
level. This tab is actually an one-dimensional tab of pointers, so that each pointer points to the beginning
of a line in the gray plane of the given image.

This function must be called after the gray plane has been allocated, using for example one of the functions
mw_new_cimage, mw_alloc_cimage or mw_change_cimage. After that, if the gray plane allocation is
changed (by e.g. mw_change_cimage or mw_delete_cimage), the tab is no longer valid and must be
deleted using free(tab).

Ones the tab has been correctly created, is it possible to read or to write the value of the pixel (x, y) (x
being an index for column and y for row) using tab[y][x].

©Example

Cimage image; /* Needed Input of module (gray plane already allocated and filled) */

int x,y; /* Needed Input of module */

unsigned char **tab;

tab = mw_newtab_gray_cimage(image);

if (tab==NULL) mwerror(FATAL,1,"Not enough memory\n");

/* Put white color in the pixel (x,y) */

if ((x < image->ncol) && (y < image->nrow)) tab[y][x] = 255;

else mwerror(ERROR,1,"Out of bounds !\n");

free(tab);

Cimages MegaWave2 System Library Cimages 21

©Name

mw plot cimage - Set the gray level value

©Summary

void mw plot cimage(image, x, y, v)

Cimage image;

int x,y;

unsigned char v;

©Description

This function set the gray level value of the given image for the pixel (x, y) (column #x and row #y) to
be v (a number between 0 - black - and 255 - white -).

Notice that a call to this function is a slow (but easy and secure) way to write a pixel value. See section 2
page 8 for how to write pixels fast.

©Example

Cimage image; /* Needed Input of module */

int x,y; /* Needed Inputs of module */

/* Put white color in the pixel (x,y) */

if ((x < image->ncol) && (y < image->nrow))

mw_plot_cimage(image,x,y,255));

else mwerror(ERROR,1,"Out of bounds !\n");

Ccimages MegaWave2 System Library Ccimages 22

2.2 Color Char Images

Use the Color Char Images memory type each time you want to process color images. As in the Char
Images case, the use of this format instead of the corresponding floating point format (Cfimage) is strongly
recommended.

2.2.1 The structure Ccimage

Beginners should focus on the first five fields only of this structure. You should also consider the fields
previous and next if your image is part of a movie. Some fields are not used at this time, such firstcol

. . . lastrow, but future modules may access to them.

typedef struct ccimage {

int nrow; /* Number of rows (dy) */

int ncol; /* Number of columns (dx) */

unsigned char *red; /* The red level plane (may be NULL) */

unsigned char *green; /* The green level plane (may be NULL) */

unsigned char *blue; /* The blue level plane (may be NULL) */

float scale; /* Scale of the picture (should be 1 for original pict.) */

char cmt[mw_cmtsize]; /* Comments */

char name[mw_namesize]; /* Name of the image */

/* Defines the signifiant part of the picture : */

int firstcol; /* index of the first col not affected by left side effect*/

int lastcol; /* index of the last col not affected by right side effect*/

int firstrow; /* index of the first row not aff. by upper side effect */

int lastrow; /* index of the last row not aff. by lower side effect */

/* For use in Movies only */

struct ccimage *previous; /* Pointer to the previous image (may be NULL) */

struct ccimage *next; /* Pointer to the next image (may be NULL) */

} *Ccimage;

Do not change by yourself the content of nrow and ncol: the size of the image has to be modified using
functions of the library only (see section 2.2.3 page 23).

You can put unsigned char values in the arrays red, green, blue at the expressed condition that you
do not exceed the maximum value of the index, given by ncol× nrow− 1.

Actually, everything works as for the Cimage structure (see section 2.1.1 page 9) but you have to deal
with three planes instead of only one. That is the proportion between each RGB component that will
give you the color. Notice that you can get more than 16 millions of different colors (23×8 exactly), so
you need appropriate device to see or print such image with fidelity.

2.2.2 Related file (external) types

The list of the available formats is the following:

Ccimages MegaWave2 System Library Ccimages 23

1. "TIFFC" Tag Image Format with three 8-bits color planes (24 bits color). This format carries
the comments field (cmt) of the memory object. It has been developed by Sam Leffler and Silicon
Graphics, Inc. To use this format, you need the TIFF library (libtiff). See the Volume One, section
“Installation”. Output objects are created without compression.

2. "PMC_C" PM format with three 8-bits planes (24 bits color). This format carries the comments
field (cmt) of the memory object. It has been developed by the University of Pennsylvania, USA.

3. "BMPC" Microsoft BMP 24-bits per pixel. Output objects are created using Windows BMP format.
Compression methods are not implemented.

4. "PPM" Portable pixmap format (24 bits color). Only the ”raw” PPM format is supported, the
”plain” (ascii) one being definitely too wasteful of space to record color images.

5. "JFIFC" JPEG/JFIF format with three 8-bits planes (24 bits color). This format carries the
comments field (cmt) of the memory object. It has been developed by the Independent JPEG
Group’s software. To use this format, you need the JPEG library (libjpeg). See the Volume One,
section “Installation”. The compression ratio is defined by the quality factor, which is an integer
between 1 (worse) and 100 (best). Default quality factor is 100. To change this value, add it as an
option to the JFIFC type. For example, JFIFC:50 means JFIFC file type with quality factor 50.
Whatever the quality factor, output objects are created with loosely compression.

2.2.3 Functions Summary

The following is a description of all the functions related to the Ccimage type. The list is in alphabetical
order.

Ccimages MegaWave2 System Library Ccimages 24

©Name

mw alloc ccimage - Allocate the RGB planes

©Summary

Ccimage mw alloc ccimage(image,nrow,ncol)

Ccimage image;

int nrow, ncol;

©Description

This function allocates the RGB planes of a Ccimage structure previously created using mw_new_ccimage.
The size of the image is given by nrow (number of rows or maximum range of y plus one) and ncol (number
of columns or maximum range of x plus one). Pixels can be addressed after this call, if the allocation
successed. There is no default value for the pixels.

Do not use this function if image has already an allocated plane: use the function mw_change_ccimage

instead.

The function mw_alloc_ccimage returns NULL if not enough memory is available to allocate the RGB
planes. Your code should check this return value to send an error message in the NULL case, and do
appropriate statement.

©Example

Ccimage image=NULL; /* Internal use: no Input neither Output of module */

if (((image = mw_new_ccimage()) == NULL) ||

(mw_alloc_ccimage(image,256,256) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

/* Set pixel (0,1) to white */

image_>red[256] = image->green[256] = image->blue[256] = 255;

Ccimages MegaWave2 System Library Ccimages 25

©Name

mw change ccimage - Change the size of the RGB planes

©Summary

Ccimage mw change ccimage(image, nrow, ncol)

Ccimage image;

int nrow, ncol;

©Description

This function changes the memory allocation of the RGB planes of a Ccimage structure, even if no
previously memory allocation was done. The new size of the image is given by nrow (number of rows or
maximum range of y plus one) and ncol (number of columns or maximum range of x plus one).

It can also create the structure if the input image = NULL. Therefore, this function can replace both
mw_new_ccimage and mw_alloc_ccimage. It is the recommended function to set image dimension of
input/output modules. Since the function can set the address of image, the variable must be set to the
return value of the function (See example below).

The function mw_change_ccimage returns NULL if not enough memory is available to allocate the RGB
planes. Your code should check this return value to send an error message in the NULL case, and do
appropriate statement.

©Example

Cimage Output; /* Output of module */

Output = mw_change_ccimage(Output, 256, 256);

if (Output == NULL) mwerror(FATAL,1,"Not enough memory.\n");

Ccimages MegaWave2 System Library Ccimages 26

©Name

mw clear ccimage - Clear the RGB planes

©Summary

void mw clear ccimage(image, r,g,b)

Ccimage image;

unsigned char r,g,b;

©Description

This function fills the ccimage image with the color given by the triplet r,g,b: all pixels will have this
RGB value.

The speed of this function depends to the C library implementation, but it is usually very fast (trying to
do faster is a waste of time).

©Example

Ccimage image; /* Output of module */

image = mw_change_ccimage(image, 100, 100);

if (image == NULL) mwerror(FATAL,1,"Not enough memory.\n");

/* Set all pixels to blue */

mw_clear_ccimage(image,0,0,255);

Ccimages MegaWave2 System Library Ccimages 27

©Name

mw copy ccimage - Copy the pixel values of color image into another one

©Summary

void mw copy ccimage(in, out)

Ccimage in,out;

©Description

This function copies the content of the RGB planes of the image in into the RGB planes of the image
out. The size of the two RGB planes must be the same.

The speed of this function depends to the C library implementation, but it is usually very fast (trying to
do faster is a waste of time).

©Example

Ccimage G; /* Needed Input */

Ccimage F; /* Optional Output */

if (F) {

printf("F option is active: copy G in F\n");

if ((F = mw_change_ccimage(F, G->nrow, G->ncol)) == NULL)

mwerror(FATAL,1,"Not enough memory.\n");

else mw_copy_ccimage(G, F);

}

else printf("F option is not active\n");

Ccimages MegaWave2 System Library Ccimages 28

©Name

mw delete ccimage - Deallocate the RGB planes

©Summary

void mw delete ccimage(image)

Ccimage image;

©Description

This function deallocates the RGB planes of a Ccimage structure previously allocated using mw_alloc_ccimage
or mw_change_ccimage, and the structure itself.

You should set image = NULL after this call since the address pointed by image is no longer valid.

©Example

Ccimage image=NULL; /* Internal use: no Input neither Output of module */

if (((image = mw_new_ccimage()) == NULL) ||

(mw_alloc_ccimage(image,256,256) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

.

.

.

mw_delete_ccimage(image);

image = NULL;

Ccimages MegaWave2 System Library Ccimages 29

©Name

mw draw ccimage - Draw a line

©Summary

void mw draw ccimage(image, a0, b0, a1, b1, r, g, b)

Ccimage image;

int a0,b0,a1,b1;

unsigned char r,g,b;

©Description

This function draws in image a connected line between the pixel (a0, b0) and the pixel (a1, b1). The color
of the line is defined by the triplet r,g,b.

©Example

Ccimage image; /* Output of module */

image = mw_change_ccimage(image, 100, 100);

if (image == NULL) mwerror(FATAL,1,"Not enough memory.\n");

/* Set all pixels to white */

mw_clear_ccimage(image,255,255,255);

/* Draw a red diagonal line */

mw_draw_ccimage(image,0,0,99,99,255,0,0);

Ccimages MegaWave2 System Library Ccimages 30

©Name

mw getdot ccimage - Return the RGB value

©Summary

void mw getdot ccimage(image, x, y, r, g, b)

Ccimage image;

int x,y;

unsigned char *r,*g,*b;

©Description

This function returns the RGB value of the given image for the pixel (x, y) (column #x and row #y). The
RGB value consists of the triplet *r,*g,*b: *r (a number between 0 and 255) gives you the proportion
of red, *g the proportion of green and *b the proportion of blue.

Notice that a call to this function is a slow (but easy and secure) way to read a pixel value. See section 2
page 8 for how to read pixels fast.

©Example

Ccimage image; /* Needed Input of module */

int x,y; /* Needed Inputs of module */

unsigned char r,g,b; /* Internal use */

if ((x < image->ncol) && (y < image->nrow))

{

mw_getdot_ccimage(image,x,y,&r,&g,&b);

printf("image(%d,%d) = %d,%d,%d\n",x,y,(int)r,(int)g,(int)b);

}

else mwerror(ERROR,1,"Out of bounds !\n");

Ccimages MegaWave2 System Library Ccimages 31

©Name

mw new ccimage - Create a new Ccimage

©Summary

Ccimage mw new ccimage();

©Description

This function creates a new Ccimage structure with empty RGB planes. No pixels can be addressed at
this time. The RGB planes may be allocated using the function mw_alloc_ccimage or mw_change_ccimage.

Do not use this function for input/output of modules, since the MegaWave2 Compiler already created the
structure for you if you need it (See Volume one: “MegaWave2 User’s Guide”). Use instead the function
mw_change_ccimage. Do not forget to deallocate the internal structures before the end of the module.

The function mw_new_ccimage returns NULL if not enough memory is available to create the structure.
Your code should check this value to send an error message in the NULL case, and do appropriate statement.

©Example

Ccimage image=NULL; /* Internal use: no Input neither Output of module */

if (((image = mw_new_ccimage()) == NULL) ||

(mw_alloc_ccimage(image,256,256) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

Ccimages MegaWave2 System Library Ccimages 32

©Name

mw newtab blue ccimage - Create a bi-dimensional tab for the blue pixels of a Ccimage

©Summary

unsigned char ** mw newtab blue ccimage(image)

Ccimage image;

©Description

This function creates a new bi-dimensional tab which allows an easy and fast access to the pixels’ blue
level. This tab is actually an one-dimensional tab of pointers, so that each pointer points to the beginning
of a line in the blue plane of the given image.

This function must be called after the blue plane has been allocated, using for example one of the functions
mw_new_ccimage, mw_alloc_ccimage or mw_change_ccimage. After that, if the blue plane allocation is
changed (by e.g. mw_change_ccimage or mw_delete_ccimage), the tab is no longer valid and must be
deleted using free(tab).

Ones the tab has been correctly created, is it possible to read or to write the blue value of the pixel (x, y)
(x being an index for column and y for row) using tab[y][x].

Red and green pixels’ value can be accessed with such a tab using the corresponding functions
mw_newtab_red_ccimage and mw_newtab_green_ccimage.

©Example

Ccimage image; /* Needed Input of module (RGB planes already allocated and filled) */

int x,y; /* Needed Input of module */

unsigned char **red,**green,**blue;

red = mw_newtab_red_ccimage(image);

if (red==NULL) mwerror(FATAL,1,"Not enough memory\n");

green = mw_newtab_green_ccimage(image);

if (green==NULL) mwerror(FATAL,1,"Not enough memory\n");

blue = mw_newtab_blue_ccimage(image);

if (blue==NULL) mwerror(FATAL,1,"Not enough memory\n");

/* Put gray color in the pixel (x,y) */

if ((x < image->ncol) && (y < image->nrow))

red[y][x] = green[y][x] = blue[y][x] = 127;

else mwerror(ERROR,1,"Out of bounds !\n");

free(blue); free(green); free(red);

Ccimages MegaWave2 System Library Ccimages 33

©Name

mw newtab green ccimage - Create a bi-dimensional tab for the green pixels of a Ccimage

©Summary

unsigned char ** mw newtab green ccimage(image)

Ccimage image;

©Description

This function creates a new bi-dimensional tab which allows an easy and fast access to the pixels’ green
level. This tab is actually an one-dimensional tab of pointers, so that each pointer points to the beginning
of a line in the green plane of the given image.

This function must be called after the green plane has been allocated, using for example one of the
functions mw_new_ccimage, mw_alloc_ccimage or mw_change_ccimage. After that, if the green plane
allocation is changed (by e.g. mw_change_ccimage or mw_delete_ccimage), the tab is no longer valid
and must be deleted using free(tab).

Ones the tab has been correctly created, is it possible to read or to write the green value of the pixel
(x, y) (x being an index for column and y for row) using tab[y][x].

Red and blue pixels’ value can be accessed with such a tab using the corresponding functions
mw_newtab_red_ccimage and mw_newtab_blue_ccimage.

©Example

Ccimage image; /* Needed Input of module (RGB planes already allocated and filled) */

int x,y; /* Needed Input of module */

unsigned char **red,**green,**blue;

red = mw_newtab_red_ccimage(image);

if (red==NULL) mwerror(FATAL,1,"Not enough memory\n");

green = mw_newtab_green_ccimage(image);

if (green==NULL) mwerror(FATAL,1,"Not enough memory\n");

blue = mw_newtab_blue_ccimage(image);

if (blue==NULL) mwerror(FATAL,1,"Not enough memory\n");

/* Put gray color in the pixel (x,y) */

if ((x < image->ncol) && (y < image->nrow))

red[y][x] = green[y][x] = blue[y][x] = 127;

else mwerror(ERROR,1,"Out of bounds !\n");

free(blue); free(green); free(red);

Ccimages MegaWave2 System Library Ccimages 34

©Name

mw newtab red ccimage - Create a bi-dimensional tab for the red pixels of a Ccimage

©Summary

unsigned char ** mw newtab red ccimage(image)

Ccimage image;

©Description

This function creates a new bi-dimensional tab which allows an easy and fast access to the pixels’ red
level. This tab is actually an one-dimensional tab of pointers, so that each pointer points to the beginning
of a line in the red plane of the given image.

This function must be called after the red plane has been allocated, using for example one of the functions
mw_new_ccimage, mw_alloc_ccimage or mw_change_ccimage. After that, if the red plane allocation is
changed (by e.g. mw_change_ccimage or mw_delete_ccimage), the tab is no longer valid and must be
deleted using free(tab).

Ones the tab has been correctly created, is it possible to read or to write the red value of the pixel (x, y)
(x being an index for column and y for row) using tab[y][x].

Green and blue pixels’ value can be accessed with such a tab using the corresponding functions
mw_newtab_green_ccimage and mw_newtab_blue_ccimage.

©Example

Ccimage image; /* Needed Input of module (RGB planes already allocated and filled) */

int x,y; /* Needed Input of module */

unsigned char **red,**green,**blue;

red = mw_newtab_red_ccimage(image);

if (red==NULL) mwerror(FATAL,1,"Not enough memory\n");

green = mw_newtab_green_ccimage(image);

if (green==NULL) mwerror(FATAL,1,"Not enough memory\n");

blue = mw_newtab_blue_ccimage(image);

if (blue==NULL) mwerror(FATAL,1,"Not enough memory\n");

/* Put gray color in the pixel (x,y) */

if ((x < image->ncol) && (y < image->nrow))

red[y][x] = green[y][x] = blue[y][x] = 127;

else mwerror(ERROR,1,"Out of bounds !\n");

free(blue); free(green); free(red);

Ccimages MegaWave2 System Library Ccimages 35

©Name

mw plot ccimage - Set the RGB value

©Summary

void mw plot ccimage(image, x, y, r, g, b)

Ccimage image;

int x,y;

unsigned char r,g,b;

©Description

This function set the RGB value of the given image for the pixel (x, y) (column #x and row #y) to be
the triplet r,g,b: r (a number between 0 and 255) gives you the proportion of red, g the proportion of
green and b the proportion of blue.

Notice that a call to this function is a slow (but easy and secure) way to write a pixel value. See section 2
page 8 for how to write pixels fast.

©Example

Ccimage image; /* Needed Input of module */

int x,y; /* Needed Inputs of module */

/* Put green color in the pixel (x,y) */

if ((x < image->ncol) && (y < image->nrow))

mw_plot_ccimage(image,x,y,0,255,0));

else mwerror(ERROR,1,"Out of bounds !\n");

Fimages MegaWave2 System Library Fimages 36

2.3 Float Images

You may want to use this format when your algorithm process image computations using floating point
arithmetic (continuous scheme). You may also use this format to represent any kind of two-dimensional
real data (such as matrix).

Notice that you may lose precision when you use such format as the input of another module which
requires integer representation (Cimage type), e.g. printing or displaying devices. In the other side, a
module which accepts Fimage type as the input will also work without degradation if you put a Cimage

type instead. It is so better to use, if possible, Cimage type for output variables and Fimage type for
input.

2.3.1 The structure Fimage

This memory type is exactly the same as Cimage (See section 2.1.1 page 9): the only difference is about
the gray field which is a pointer to floating points values.

Consequently, there is no formal correspondance between a gray level value and a visual gray level (e.g.
255.0 may not represent “white”).

typedef struct fimage {

int nrow; /* Number of rows (dy) */

int ncol; /* Number of columns (dx) */

float *gray; /* The Gray level plane (may be NULL) */

float scale; /* Scale of the picture (should be 1 for original pict.) */

char cmt[mw_cmtsize]; /* Comments */

char name[mw_namesize]; /* Name of the image */

/* Defines the signifiant part of the picture : */

int firstcol; /* index of the first col not affected by left side effect*/

int lastcol; /* index of the last col not affected by right side effect*/

int firstrow; /* index of the first row not aff. by upper side effect */

int lastrow; /* index of the last row not aff. by lower side effect */

} *Fimage;

2.3.2 Related file (external) types

The list of the available formats is the following:

1. "RIM" Original format defined by MegaWave1. It is close to the IMG format, but it uses a 32-bits
plane in order to record floating point values. This format carries the comments field (cmt) of the
memory object.

2. "PM_F" PM format with one 32-bits plane (floating point gray levels). This format carries the
comments field (cmt) of the memory object.

2.3.3 Functions Summary

The following is a description of all the functions related to the Fimage type. The list is in alphabetical
order.

Fimages MegaWave2 System Library Fimages 37

©Name

mw alloc fimage - Allocate the gray plane

©Summary

Fimage mw alloc fimage(image,nrow,ncol)

Fimage image;

int nrow, ncol;

©Description

This function allocates the gray plane of a Fimage structure previously created using mw_new_fimage.
The size of the image is given by nrow (number of rows or maximum range of y plus one) and ncol

(number of columns or maximum range of x plus one). Pixels can be addressed after this call, if the
allocation successed. There is no default value for the pixels.

Do not use this function if image has already an allocated plane: use the function mw_change_fimage

instead.

The function mw_alloc_fimage returns NULL if not enough memory is available to allocate the gray plane.
Your code should check this return value to send an error message in the NULL case, and do appropriate
statement.

©Example

Fimage image=NULL; /* Internal use: no Input neither Output of module */

if (((image = mw_new_fimage()) == NULL) ||

(mw_alloc_fimage(image,256,256) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

/* Set pixel (0,1) to the value -1.0 */

image->gray[256] = -1.0;

Fimages MegaWave2 System Library Fimages 38

©Name

mw change fimage - Change the size of the gray plane

©Summary

Fimage mw change fimage(image, nrow, ncol)

Fimage image;

int nrow, ncol;

©Description

This function changes the memory allocation of the gray plane of a Fimage structure, even if no previously
memory allocation was done. The new size of the image is given by nrow (number of rows or maximum
range of y plus one) and ncol (number of columns or maximum range of x plus one).

It can also create the structure if the input image = NULL. Therefore, this function can replace both
mw_new_fimage and mw_alloc_fimage. It is the recommended function to set image dimension of in-
put/output modules. Since the function can set the address of image, the variable must be set to the
return value of the function (See example below).

The function mw_change_fimage returns NULL if not enough memory is available to allocate the gray
plane. Your code should check this return value to send an error message in the NULL case, and do
appropriate statement.

©Example

Fimage Output; /* Output of module */

Output = mw_change_fimage(Output, 256, 256);

if (Output == NULL) mwerror(FATAL,1,"Not enough memory.\n");

Fimages MegaWave2 System Library Fimages 39

©Name

mw clear fimage - Clear the gray plane

©Summary

void mw clear fimage(image, v)

Fimage image;

float v;

©Description

This function fills the fimage image with the gray value given by v: all pixels will have the gray level v.

©Example

Fimage image; /* Output of module */

image = mw_change_fimage(image, 100, 100);

if (image == NULL) mwerror(FATAL,1,"Not enough memory.\n");

/* Set all pixels to 0.0 */

mw_clear_fimage(image,0.0);

Fimages MegaWave2 System Library Fimages 40

©Name

mw copy fimage - Copy the pixel values of an image into another one

©Summary

void mw copy fimage(in, out)

Fimage in,out;

©Description

This function copies the content of the gray plane of the image in into the gray plane of the image out.
The size of the two gray planes must be the same.

The speed of this function depends to the C library implementation, but it is usually very fast (trying to
do faster is a waste of time).

©Example

Fimage G; /* Needed Input */

Fimage F; /* Optional Output */

if (F) {

printf("F option is active: copy G in F\n");

if ((F = mw_change_fimage(F, G->nrow, G->ncol)) == NULL)

mwerror(FATAL,1,"Not enough memory.\n");

else mw_copy_fimage(G, F);

}

else printf("F option is not active\n");

Fimages MegaWave2 System Library Fimages 41

©Name

mw delete fimage - Deallocate the gray plane

©Summary

void mw delete fimage(image)

Fimage image;

©Description

This function deallocates the gray plane of a Fimage structure previously allocated using mw_alloc_fimage
or mw_change_fimage, and the structure itself.

You should set image = NULL after this call since the address pointed by image is no longer valid.

©Example

Fimage image=NULL; /* Internal use: no Input neither Output of module */

if (((image = mw_new_fimage()) == NULL) ||

(mw_alloc_fimage(image,256,256) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

.

.

.

mw_delete_fimage(image);

image = NULL;

Fimages MegaWave2 System Library Fimages 42

©Name

mw draw fimage - Draw a line

©Summary

void mw draw fimage(image, a0, b0, a1, b1, c)

Fimage image;

int a0,b0,a1,b1; float c;

©Description

This function draws in image a connected line of gray level c between the pixel (a0, b0) and the pixel
(a1, b1).

©Example

Fimage image; /* Output of module */

image = mw_change_fimage(image, 100, 100);

if (image == NULL) mwerror(FATAL,1,"Not enough memory.\n");

/* Clear all pixels */

mw_clear_fimage(image,0.0);

/* Draw a diagonal line of gray level 1.0 */

mw_draw_fimage(image,0,0,99,99,1.0);

Fimages MegaWave2 System Library Fimages 43

©Name

mw getdot fimage - Return the gray level value

©Summary

float mw getdot fimage(image, x, y)

Fimage image;

int x,y;

©Description

This function returns the gray level value (any floating point number) of the given image for the pixel
(x, y) (column #x and row #y).

Notice that a call to this function is a slow (but easy and secure) way to read a pixel value. See section 2
page 8 for how to read pixels fast.

©Example

Fimage image; /* Needed Input of module */

int x,y; /* Needed Inputs of module */

if ((x < image->ncol) && (y < image->nrow))

printf("image(%d,%d) = %f\n",x,y,mw_getdot_fimage(image,x,y));

else mwerror(ERROR,1,"Out of bounds !\n");

Fimages MegaWave2 System Library Fimages 44

©Name

mw new fimage - Create a new Fimage

©Summary

Fimage mw new fimage();

©Description

This function creates a new Fimage structure with an empty gray plane. No pixels can be addressed at
this time. The gray plane may be allocated using the function mw_alloc_fimage or mw_change_fimage.

Do not use this function for input/output of modules, since the MegaWave2 Compiler already created the
structure for you if you need it (See Volume one: “MegaWave2 User’s Guide”). Use instead the function
mw_change_fimage. Do not forget to deallocate the internal structures before the end of the module.

The function mw_new_fimage returns NULL if not enough memory is available to create the structure. Your
code should check this value to send an error message in the NULL case, and do appropriate statement.

©Example

Fimage image=NULL; /* Internal use: no Input neither Output of module */

if (((image = mw_new_fimage()) == NULL) ||

(mw_alloc_fimage(image,256,256) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

Fimages MegaWave2 System Library Fimages 45

©Name

mw newtab gray fimage - Create a bi-dimensional tab for the pixels of a Fimage

©Summary

float ** mw newtab gray fimage(image)

Fimage image;

©Description

This function creates a new bi-dimensional tab which allows an easy and fast access to the pixels’ gray
level. This tab is actually an one-dimensional tab of pointers, so that each pointer points to the beginning
of a line in the gray plane of the given image.

This function must be called after the gray plane has been allocated, using for example one of the functions
mw_new_fimage, mw_alloc_fimage or mw_change_fimage. After that, if the gray plane allocation is
changed (by e.g. mw_change_fimage or mw_delete_fimage), the tab is no longer valid and must be
deleted using free(tab).

Ones the tab has been correctly created, is it possible to read or to write the value of the pixel (x, y) (x
being an index for column and y for row) usingtab[y][x].

©Example

Fimage image; /* Needed Input of module (gray plane already allocated and filled) */

int x,y; /* Needed Input of module */

float **tab;

tab = mw_newtab_gray_fimage(image);

if (tab==NULL) mwerror(FATAL,1,"Not enough memory\n");

/* Put 0 in the pixel (x,y) */

if ((x < image->ncol) && (y < image->nrow)) tab[y][x] = 0.0;

else mwerror(ERROR,1,"Out of bounds !\n");

free(tab);

Fimages MegaWave2 System Library Fimages 46

©Name

mw plot fimage - Set the gray level value

©Summary

void mw plot fimage(image, x, y, v)

Fimage image;

int x,y;

float v;

©Description

This function set the gray level value of the given image for the pixel (x, y) (column #x and row #y) to
be v (any floating point number).

Notice that a call to this function is a slow (but easy and secure) way to write a pixel value. See section 2
page 8 for how to write pixels fast.

©Example

Fimage image; /* Needed Input of module */

int x,y; /* Needed Inputs of module */

/* Put 0.0 in the pixel (x,y) */

if ((x < image->ncol) && (y < image->nrow))

mw_plot_fimage(image,x,y,0.0));

else mwerror(ERROR,1,"Out of bounds !\n");

Cfimages MegaWave2 System Library Cfimages 47

2.4 Color Float Images

You may want to use this format when you need to process color images with floating point precision
(continuous scheme). Please notice that this format wastes a lot of memory and computational time.

2.4.1 The structure Cfimage

This memory type is not exactly the same as Ccimage (See section 2.2.1 page 22): the difference is not
only about the RGB fields which are pointers to floating points values and not to unsigned char, but also
about the color model. A color model is a specification of a 3D-coordinate system and a subspace within
that system where each color is represented by a single point. Whatever the color model, a cfimage is
alway made by three planes called red, green and blue. The significance of those planes is given by the
value of the model field. The first plane red matches the first letter of the model’s name (e.g. R for RGB
model, H for HSI model), the second plane green matches the second letter of the model’s name (e.g. G
for RGB model, S for HSI model), and the third plane blue matches the third letter (e.g. B for RGB
model, I for HSI model).

The implemented color models are

• MODEL RGB Cartesian coordinate system Red, Green, Blue.

• MODEL YUV YUV coordinate system (CCIR 601-1).

• MODEL HSI HSI coordinate system (H is Hue, S is Saturation and I is Intensity or luminance).

• MODEL HSV HSV coordinate system (H is Hue, S is Saturation and V is Value).

Be aware that a MegaWave2 module which takes a cfimage in input performs a statement likely to work
for one color model only. One should checks the value of the model field before any statement.

typedef struct cfimage {

int nrow; /* Number of rows (dy) */

int ncol; /* Number of columns (dx) */

int model; /* Model of the colorimetric system */

float *red; /* The Red plane if model=MODEL_RGB (may be NULL) or Y/H */

float *green; /* The Green plane if model=MODEL_RGB (may be NULL) or U/S */

float *blue; /* The Blue plane if model=MODEL_RGB (may be NULL) or V/I */

float scale; /* Scale of the picture (should be 1 for original pict.) */

char cmt[mw_cmtsize]; /* Comments */

char name[mw_namesize]; /* Name of the image */

/* Defines the signifiant part of the picture : */

int firstcol; /* index of the first col not affected by left side effect*/

int lastcol; /* index of the last col not affected by right side effect*/

int firstrow; /* index of the first row not aff. by upper side effect */

int lastrow; /* index of the last row not aff. by lower side effect */

} *Cfimage;

Cfimages MegaWave2 System Library Cfimages 48

2.4.2 Related file (external) types

The list of the available formats is the following:

PMC F PM format with three 8-bits planes, each plane being of float values. This format carries the com-
ments field (cmt) of the memory object. It has been developed by the University of Pennsylvania,
USA. An extension has been performed to record the model value. In the case of RGB model, the
format is exactly the same as the original.

2.4.3 Functions Summary

The following is a description of all the functions related to the Cfimage type. The list is in alphabetical
order. Conversion between memory models are not implemented as functions of the system library, but
as modules (See Volume three: “MegaWave2 User’s Modules Library”).

Cfimages MegaWave2 System Library Cfimages 49

©Name

mw alloc cfimage - Allocate the RGB planes

©Summary

Cfimage mw alloc cfimage(image,nrow,ncol)

Cfimage image;

int nrow, ncol;

©Description

This function allocates the RGB planes of a Cfimage structure previously created using mw_new_cfimage.
The size of the image is given by nrow (number of rows or maximum range of y plus one) and ncol (number
of columns or maximum range of x plus one). Pixels can be addressed after this call, if the allocation
successed. There is no default value for the pixels.

Do not use this function if image has already an allocated plane: use the function mw_change_cfimage

instead.

The function mw_alloc_cfimage returns NULL if not enough memory is available to allocate the RGB
planes. Your code should check this return value to send an error message in the NULL case, and do
appropriate statement.

©Example

Cfimage image=NULL; /* Internal use: no Input neither Output of module */

if (((image = mw_new_cfimage()) == NULL) ||

(mw_alloc_cfimage(image,256,256) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

/* Set pixel (0,1) to (0.0,0.0,0.0) */

image_>red[256] = image->green[256] = image->blue[256] = 0.0;

Cfimages MegaWave2 System Library Cfimages 50

©Name

mw change cfimage - Change the size of the RGB planes

©Summary

Cfimage mw change cfimage(image, nrow, ncol)

Cfimage image;

int nrow, ncol;

©Description

This function changes the memory allocation of the RGB planes of a Cfimage structure, even if no
previously memory allocation was done. The new size of the image is given by nrow (number of rows or
maximum range of y plus one) and ncol (number of columns or maximum range of x plus one).

It can also create the structure if the input image = NULL. Therefore, this function can replace both
mw_new_cfimage and mw_alloc_cfimage. It is the recommended function to set image dimension of
input/output modules. Since the function can set the address of image, the variable must be set to the
return value of the function (See example below).

The function mw_change_cfimage returns NULL if not enough memory is available to allocate the RGB
planes. Your code should check this return value to send an error message in the NULL case, and do
appropriate statement.

©Example

Cimage Output; /* Output of module */

Output = mw_change_cfimage(Output, 256, 256);

if (Output == NULL) mwerror(FATAL,1,"Not enough memory.\n");

Cfimages MegaWave2 System Library Cfimages 51

©Name

mw clear cfimage - Clear the RGB planes

©Summary

void mw clear cfimage(image, r,g,b)

Cfimage image;

float r,g,b;

©Description

This function fills the cfimage image with the color given by the triplet r,g,b: all pixels will have this
RGB value.

©Example

Cfimage image; /* Output of module */

image = mw_change_cfimage(image, 100, 100);

if (image == NULL) mwerror(FATAL,1,"Not enough memory.\n");

/* Set all pixels to (0.0,0.0,1.0) */

mw_clear_cfimage(image,0.0,0.0,1.0);

Cfimages MegaWave2 System Library Cfimages 52

©Name

mw copy cfimage - Copy the pixel values of color image into another one

©Summary

void mw copy cfimage(in, out)

Cfimage in,out;

©Description

This function copies the content of the RGB planes of the image in into the RGB planes of the image
out. The size of the two RGB planes must be the same.

The speed of this function depends to the C library implementation, but it is usually very fast (trying to
do faster is a waste of time).

©Example

Cfimage G; /* Needed Input */

Cfimage F; /* Optional Output */

if (F) {

printf("F option is active: copy G in F\n");

if ((F = mw_change_cfimage(F, G->nrow, G->ncol)) == NULL)

mwerror(FATAL,1,"Not enough memory.\n");

else mw_copy_cfimage(G, F);

}

else printf("F option is not active\n");

Cfimages MegaWave2 System Library Cfimages 53

©Name

mw delete cfimage - Deallocate the RGB planes

©Summary

void mw delete cfimage(image)

Cfimage image;

©Description

This function deallocates the RGB planes of a Cfimage structure previously allocated using mw_alloc_cfimage
or mw_change_cfimage, and the structure itself.

You should set image = NULL after this call since the address pointed by image is no longer valid.

©Example

Cfimage image=NULL; /* Internal use: no Input neither Output of module */

if (((image = mw_new_cfimage()) == NULL) ||

(mw_alloc_cfimage(image,256,256) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

.

.

.

mw_delete_cfimage(image);

image = NULL;

Cfimages MegaWave2 System Library Cfimages 54

©Name

mw draw cfimage - Draw a line

©Summary

void mw draw cfimage(image, a0, b0, a1, b1, r, g, b)

Cfimage image;

int a0,b0,a1,b1;

float r,g,b;

©Description

This function draws in image a connected line between the pixel (a0, b0) and the pixel (a1, b1). The color
of the line is defined by the triplet r,g,b.

©Example

Cfimage image; /* Output of module */

image = mw_change_cfimage(image, 100, 100);

if (image == NULL) mwerror(FATAL,1,"Not enough memory.\n");

/* Set all pixels to (0.0,0.0,0.0) */

mw_clear_cfimage(image,0.0,0.0,0.0);

/* Draw a diagonal line with color (1.0,0.0,0.0) */

mw_draw_cfimage(image,0,0,99,99,1.0,0.0,0.0);

Cfimages MegaWave2 System Library Cfimages 55

©Name

mw getdot cfimage - Return the RGB value

©Summary

void mw getdot cfimage(image, x, y, r, g, b)

Cfimage image;

int x,y;

float *r,*g,*b;

©Description

This function returns the RGB value of the given image for the pixel (x, y) (column #x and row #y).
The RGB value consists of the triplet *r,*g,*b: *r (any floating point number) gives you the proportion
of red, *g the proportion of green and *b the proportion of blue.

Notice that a call to this function is a slow (but easy and secure) way to read a pixel value. See section 2
page 8 for how to read pixels fast.

©Example

Cfimage image; /* Needed Input of module */

int x,y; /* Needed Inputs of module */

float r,g,b; /* Internal use */

if ((x < image->ncol) && (y < image->nrow))

{

mw_getdot_cfimage(image,x,y,&r,&g,&b);

printf("image(%d,%d) = %d,%d,%d\n",x,y,r,g,b);

}

else mwerror(ERROR,1,"Out of bounds !\n");

Cfimages MegaWave2 System Library Cfimages 56

©Name

mw new cfimage - Create a new Cfimage

©Summary

Cfimage mw new cfimage();

©Description

This function creates a new Cfimage structure with empty RGB planes. No pixels can be addressed at
this time. The RGB planes may be allocated using the function mw_alloc_cfimage or mw_change_cfimage.

Do not use this function for input/output of modules, since the MegaWave2 Compiler already created the
structure for you if you need it (See Volume one: “MegaWave2 User’s Guide”). Use instead the function
mw_change_cfimage. Do not forget to deallocate the internal structures before the end of the module.

The function mw_new_cfimage returns NULL if not enough memory is available to create the structure.
Your code should check this value to send an error message in the NULL case, and do appropriate statement.

©Example

Cfimage image=NULL; /* Internal use: no Input neither Output of module */

if (((image = mw_new_cfimage()) == NULL) ||

(mw_alloc_cfimage(image,256,256) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

Cfimages MegaWave2 System Library Cfimages 57

©Name

mw newtab blue cfimage - Create a bi-dimensional tab for the blue pixels of a Cfimage

©Summary

float ** mw newtab blue cfimage(image)

Cfimage image;

©Description

This function creates a new bi-dimensional tab which allows an easy and fast access to the pixels’ blue
level. This tab is actually an one-dimensional tab of pointers, so that each pointer points to the beginning
of a line in the blue plane of the given image.

This function must be called after the blue plane has been allocated, using for example one of the functions
mw_new_cfimage, mw_alloc_cfimage or mw_change_cfimage. After that, if the blue plane allocation is
changed (by e.g. mw_change_cfimage or mw_delete_cfimage), the tab is no longer valid and must be
deleted using free(tab).

Ones the tab has been correctly created, is it possible to read or to write the blue value of the pixel (x, y)
(x being an index for column and y for row) using tab[y][x].

Red and green pixels’ value can be accessed with such a tab using the corresponding functions
mw_newtab_red_cfimage and mw_newtab_green_cfimage.

©Example

Cfimage image; /* Needed Input of module (RGB planes already allocated and filled) */

int x,y; /* Needed Input of module */

float **red,**green,**blue;

red = mw_newtab_red_cfimage(image);

if (red==NULL) mwerror(FATAL,1,"Not enough memory\n");

green = mw_newtab_green_cfimage(image);

if (green==NULL) mwerror(FATAL,1,"Not enough memory\n");

blue = mw_newtab_blue_cfimage(image);

if (blue==NULL) mwerror(FATAL,1,"Not enough memory\n");

/* Put black color in the pixel (x,y) */

if ((x < image->ncol) && (y < image->nrow))

red[y][x] = green[y][x] = blue[y][x] = 0.0;

else mwerror(ERROR,1,"Out of bounds !\n");

free(blue); free(green); free(red);

Cfimages MegaWave2 System Library Cfimages 58

©Name

mw newtab green cfimage - Create a bi-dimensional tab for the green pixels of a Cfimage

©Summary

float ** mw newtab green cfimage(image)

Cfimage image;

©Description

This function creates a new bi-dimensional tab which allows an easy and fast access to the pixels’ green
level. This tab is actually an one-dimensional tab of pointers, so that each pointer points to the beginning
of a line in the green plane of the given image.

This function must be called after the green plane has been allocated, using for example one of the
functions mw_new_cfimage, mw_alloc_cfimage or mw_change_cfimage. After that, if the green plane
allocation is changed (by e.g. mw_change_cfimage or mw_delete_cfimage), the tab is no longer valid
and must be deleted using free(tab).

Ones the tab has been correctly created, is it possible to read or to write the green value of the pixel
(x, y) (x being an index for column and y for row) using tab[y][x].

Red and blue pixels’ value can be accessed with such a tab using the corresponding functions
mw_newtab_red_cfimage and mw_newtab_blue_cfimage.

©Example

Cfimage image; /* Needed Input of module (RGB planes already allocated and filled) */

int x,y; /* Needed Input of module */

float **red,**green,**blue;

red = mw_newtab_red_cfimage(image);

if (red==NULL) mwerror(FATAL,1,"Not enough memory\n");

green = mw_newtab_green_cfimage(image);

if (green==NULL) mwerror(FATAL,1,"Not enough memory\n");

blue = mw_newtab_blue_cfimage(image);

if (blue==NULL) mwerror(FATAL,1,"Not enough memory\n");

/* Put black color in the pixel (x,y) */

if ((x < image->ncol) && (y < image->nrow))

red[y][x] = green[y][x] = blue[y][x] = 0.0;

else mwerror(ERROR,1,"Out of bounds !\n");

free(blue); free(green); free(red);

Cfimages MegaWave2 System Library Cfimages 59

©Name

mw newtab red cfimage - Create a bi-dimensional tab for the red pixels of a Cfimage

©Summary

float ** mw newtab red cfimage(image)

Cfimage image;

©Description

This function creates a new bi-dimensional tab which allows an easy and fast access to the pixels’ red
level. This tab is actually an one-dimensional tab of pointers, so that each pointer points to the beginning
of a line in the red plane of the given image.

This function must be called after the red plane has been allocated, using for example one of the functions
mw_new_cfimage, mw_alloc_cfimage or mw_change_cfimage. After that, if the red plane allocation is
changed (by e.g. mw_change_cfimage or mw_delete_cfimage), the tab is no longer valid and must be
deleted using free(tab).

Ones the tab has been correctly created, is it possible to read or to write the red value of the pixel (x, y)
(x being an index for column and y for row) using tab[y][x].

Green and blue pixels’ value can be accessed with such a tab using the corresponding functions
mw_newtab_green_cfimage and mw_newtab_blue_cfimage.

©Example

Cfimage image; /* Needed Input of module (RGB planes already allocated and filled) */

int x,y; /* Needed Input of module */

float **red,**green,**blue;

red = mw_newtab_red_cfimage(image);

if (red==NULL) mwerror(FATAL,1,"Not enough memory\n");

green = mw_newtab_green_cfimage(image);

if (green==NULL) mwerror(FATAL,1,"Not enough memory\n");

blue = mw_newtab_blue_cfimage(image);

if (blue==NULL) mwerror(FATAL,1,"Not enough memory\n");

/* Put black color in the pixel (x,y) */

if ((x < image->ncol) && (y < image->nrow))

red[y][x] = green[y][x] = blue[y][x] = 0.0;

else mwerror(ERROR,1,"Out of bounds !\n");

free(blue); free(green); free(red);

Cfimages MegaWave2 System Library Cfimages 60

©Name

mw plot cfimage - Set the RGB value

©Summary

void mw plot cfimage(image, x, y, r, g, b)

Cfimage image;

int x,y;

float r,g,b;

©Description

This function set the RGB value of the given image for the pixel (x, y) (column #x and row #y) to be
the triplet r,g,b: r (a floating point number) gives you the proportion of red, g the proportion of green
and b the proportion of blue.

Notice that a call to this function is a slow (but easy and secure) way to write a pixel value. See section 2
page 8 for how to write pixels fast.

©Example

Cfimage image; /* Needed Input of module */

int x,y; /* Needed Inputs of module */

/* Put color (0.0,0.0,0.0) in the pixel (x,y) */

if ((x < image->ncol) && (y < image->nrow))

mw_plot_cfimage(image,x,y,0.0,0.0,0.0));

else mwerror(ERROR,1,"Out of bounds !\n");

Movies MegaWave2 System Library Movies 61

3 Movies

A movie is a succession of images. In MegaWave2, it is implemented as a chain of images: you may notice
that all types of images have the fields previous and next(see section 2). Normally set to NULL, these
fields point to the previous image and to the next image respectively, when the image is part of a movie.
The first image of the movie has a NULLprevious field and the last image of the movie has a NULLnext

field.

A movie structure is basically a pointer to the first image. For each image structure corresponds a movie
structure.

3.1 Char movies

The Char Movie memory type corresponds to movies where each images are of the Cimage memory type.
The use of this memory type is strongly recommended, since other movies types waste a lot of memory
and computational time.

3.1.1 The structure Cmovie

Beginners should only focus on the field first of this structure: if movie is of Cmovie type, then
movie->first is of Cimage type and it is the first image of the movie; movie->first->next is the
second image, etc.

typedef struct cmovie {

float scale; /* Scale (time-domain) of the movie (should be 1) */

char cmt[mw_cmtsize]; /* Comments */

char name[mw_namesize]; /* Name of the image */

Cimage first; /* Pointer to the first image */

} *Cmovie;

3.1.2 Related file (external) types

The way MegaWave2 records movies is the following: each image is recorded in a separate file, using one
of the external types available for the corresponding type Cimage (see section 2.1.2 for more information).
Let suppose that the external name of the movie object is movie. Then, MegaWave2 creates a MegaWave2
Data Ascii file named movie with a def Cmovie area. In this area is listed the name of the image files,
following the order given by the sequence of images. By changing the order of two file names, you change
the order of the images in the sequence (i.e. the name of the file is not meaningful by itself, for example
the image file name movie_002 may not be the second image of the sequence). There is no limitation for
the number of images, up to the available memory.

Note: there is an old format, which is still recognized for backward compatibility. Is this old format, the
file name movie is empty and the name of each image file is meaningful (e.g. movie_002 is always the
second image of the sequence). In that case, no more than 999 images per movie can be recorded.

3.1.3 Functions Summary

The following is a description of all the functions related to the Cmovie type. The list is in alphabetical
order.

Cmovies MegaWave2 System Library Cmovies 62

©Name

mw change cmovie - Define the movie structure, if not defined

©Summary

Cmovie mw change cmovie(movie)

Cmovie movie;

©Description

This function returns a movie structure if the input movie = NULL. It is provided despite the mw_new_cmovie
function for global coherence with other memory types.

The function mw_change_cmovie returns NULL if not enough memory is available to define the structure.
Your code should check this return value to send an error message in the NULL case, and do appropriate
statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module.

Images have to be allocated using the appropriate functions (See the example below).

©Example

Cmovie movie=NULL; /* Internal use: no Input neither Output of module */

movie = mw_change_cmovie(movie);

if (movie == NULL) mwerror(FATAL,1,"Not enough memory.\n");

...

(End of this example as for the mw_new_cmovie function).

Cmovies MegaWave2 System Library Cmovies 63

©Name

mw delete cmovie - Deallocate all the movie

©Summary

void mw delete cmovie(movie)

Cmovie movie;

©Description

This function deallocates all the memory used by a Cmovie structure: it deallocates the gray plane of all
images, the image structures and the movie structure itself.

You should set movie = NULL after this call since the address pointed by movie is no longer valid.

©Example
See the example of the mw_new_cmovie function: when a memory allocation fails for mw_change_cimage,
all the previously memory allocations are freed by the call to mw_delete_cmovie(movie).

Cmovies MegaWave2 System Library Cmovies 64

©Name

mw new cmovie - Create a new Cmovie

©Summary

Cmovie mw new cmovie();

©Description

This function creates a new Cmovie structure. It returns NULL if not enough memory is available to
create the structure. Your code should check this value to send an error message in the NULL case, and
do appropriate statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module.

Images have to be allocated using the appropriate functions (See the example below).

©Example

/* Create a movie with 10 images of size (100,100) */

Cmovie movie; /* Internal use: no Input neither Output of module */

Cimage image,image_prev; /* Internal use */

movie = mw_new_cmovie();

if (movie == NULL) mwerror(FATAL,1,"Not enough memory.\n");

for (l=1;l<=10;l++)

{

if ((image = mw_change_cimage(NULL,100,100)) == NULL)

{

mw_delete_cmovie(movie);

mwerror(FATAL,1,"Not enough memory.");

}

if (l == 1) movie->first = image;

else

{

image_prev->next = image;

image->previous = image_prev;

}

image_prev = image;

}

Ccmovies MegaWave2 System Library Ccmovies 65

3.2 Color Char movies

The Color Char Movie memory type corresponds to movies where each images are of the Ccimage memory
type. Use this memory type each time you have to process color movies. As in the Char Movies case, the
use of this format instead of the corresponding floating point format (Cfmovie) is strongly recommended.

3.2.1 The structure Ccmovie

Beginners should focus on the field first only of this structure: if movie is of Ccmovie type, then
movie->first is of Ccimage type and it is the first image of the movie; movie->first->next is the
second image, etc.

typedef struct ccmovie {

float scale; /* Scale (time-domain) of the movie (should be 1) */

char cmt[mw_cmtsize]; /* Comments */

char name[mw_namesize]; /* Name of the image */

Ccimage first; /* Pointer to the first image */

} *Ccmovie;

3.2.2 Related file (external) types

The way MegaWave2 records movies is the following: each image is recorded in a separate file, using one of
the external types available for the corresponding type Ccimage (see section 2.2.2 for more information).
Let suppose that the external name of the movie object is movie. Then, MegaWave2 creates a MegaWave2
Data Ascii file named movie with a def CCmovie area. In this area is listed the name of the image files,
following the order given by the sequence of images. By changing the order of two file names, you change
the order of the images in the sequence (i.e. the name of the file is not meaningful by itself, for example
the image file name movie_002 may not be the second image of the sequence). There is no limitation for
the number of images, up to the available memory.

Note: there is an old format, which is still recognized for backward compatibility. Is this old format, the
file name movie is empty and the name of each image file is meaningful (e.g. movie_002 is always the
second image of the sequence). In that case, no more than 999 images per movie can be recorded.

3.2.3 Functions Summary

The following is a description of all the functions related to the Ccmovie type. The list is in alphabetical
order.

Ccmovies MegaWave2 System Library Ccmovies 66

©Name

mw change ccmovie - Define the movie structure, if not defined

©Summary

Ccmovie mw change ccmovie(movie)

Ccmovie movie;

©Description

This function returns a movie structure if the input movie = NULL. It is provided despite the mw_new_ccmovie
function for global coherence with other memory types.

The function mw_change_ccmovie returns NULL if not enough memory is available to define the structure.
Your code should check this return value to send an error message in the NULL case, and do appropriate
statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module.

Images have to be allocated using the appropriate functions (See the example below).

©Example

Ccmovie movie=NULL; /* Internal use: no Input neither Output of module */

movie = mw_change_ccmovie(movie);

if (movie == NULL) mwerror(FATAL,1,"Not enough memory.\n");

...

(End of this example as for the mw_new_ccmovie function).

Ccmovies MegaWave2 System Library Ccmovies 67

©Name

mw delete ccmovie - Deallocate all the movie

©Summary

void mw delete ccmovie(movie)

Ccmovie movie;

©Description

This function deallocates all the memory used by a Ccmovie structure: it deallocates the color planes of
all images, the image structures and the movie structure itself.

You should set movie = NULL after this call since the address pointed by movie is no longer valid.

©Example
See the example of the mw_new_ccmovie function: when a memory allocation fails for mw_change_ccimage,
all the previously memory allocations are freed by the call to mw_delete_ccmovie(movie).

Ccmovies MegaWave2 System Library Ccmovies 68

©Name

mw new ccmovie - Create a new Ccmovie

©Summary

Ccmovie mw new ccmovie();

©Description

This function creates a new Ccmovie structure. It returns NULL if not enough memory is available to
create the structure. Your code should check this value to send an error message in the NULL case, and
do appropriate statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module.

Images have to be allocated using the appropriate functions (See the example below).

©Example

/* Create a movie with 10 images of size (100,100) */

Ccmovie movie; /* Internal use: no Input neither Output of module */

Ccimage image,image_prev; /* Internal use */

movie = mw_new_ccmovie();

if (movie == NULL) mwerror(FATAL,1,"Not enough memory.\n");

for (l=1;l<=10;l++)

{

if ((image = mw_change_ccimage(NULL,100,100)) == NULL)

{

mw_delete_ccmovie(movie);

mwerror(FATAL,1,"Not enough memory.");

}

if (l == 1) movie->first = image;

else

{

image_prev->next = image;

image->previous = image_prev;

}

image_prev = image;

}

Fmovies MegaWave2 System Library Fmovies 69

3.3 Float movies

The Float Movie memory type corresponds to movies where each images are of the Fimage memory type.
The use of this memory type is discouraged, since it wastes a lot of memory and computational time.
Use it when you must process data using floating point arithmetic, and when you cannot lose precision
by converting the output to integer values.

3.3.1 The structure Fmovie

Beginners should focus on the field first only of this structure: if movie is of Fmovie type, then
movie->first is of Fimage type and it is the first image of the movie; movie->first->next is the
second image, etc.

typedef struct fmovie {

float scale; /* Scale (time-domain) of the movie (should be 1) */

char cmt[mw_cmtsize]; /* Comments */

char name[mw_namesize]; /* Name of the image */

Fimage first; /* Pointer to the first image */

} *Fmovie;

3.3.2 Related file (external) types

The way MegaWave2 records movies is the following: each image is recorded in a separate file, using one
of the external types available for the corresponding type Fimage (see section 2.3.2 for more information).
Let suppose that the external name of the movie object is movie. Then, MegaWave2 creates a MegaWave2
Data Ascii file named movie with a def Fmovie area. In this area is listed the name of the image files,
following the order given by the sequence of images. By changing the order of two file names, you change
the order of the images in the sequence (i.e. the name of the file is not meaningful by itself, for example
the image file name movie_002 may not be the second image of the sequence). There is no limitation for
the number of images, up to the available memory.

Note: there is an old format, which is still recognized for backward compatibility. Is this old format, the
file name movie is empty and the name of each image file is meaningful (e.g. movie_002 is always the
second image of the sequence). In that case, no more than 999 images per movie can be recorded.

3.3.3 Functions Summary

The following is a description of all the functions related to the Fmovie type. The list is in alphabetical
order.

Fmovies MegaWave2 System Library Fmovies 70

©Name

mw change fmovie - Define the movie structure, if not defined

©Summary

Fmovie mw change fmovie(movie)

Fmovie movie;

©Description

This function returns a movie structure if the input movie = NULL. It is provided despite the mw_new_fmovie
function for global coherence with other memory types.

The function mw_change_fmovie returns NULL if not enough memory is available to define the structure.
Your code should check this return value to send an error message in the NULL case, and do appropriate
statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module.

Images have to be allocated using the appropriate functions (See the example below).

©Example

Fmovie movie=NULL; /* Internal use: no Input neither Output of module */

movie = mw_change_fmovie(movie);

if (movie == NULL) mwerror(FATAL,1,"Not enough memory.\n");

...

(End of this example as for the mw_new_fmovie function).

Fmovies MegaWave2 System Library Fmovies 71

©Name

mw delete fmovie - Deallocate all the movie

©Summary

void mw delete fmovie(movie)

Fmovie movie;

©Description

This function deallocates all the memory used by a Fmovie structure: it deallocates the gray plane of all
images, the image structures and the movie structure itself.

You should set movie = NULL after this call since the address pointed by movie is no longer valid.

©Example
See the example of the mw_new_fmovie function: when a memory allocation fails for mw_change_fimage,
all the previously memory allocations are freed by the call to mw_delete_fmovie(movie).

Fmovies MegaWave2 System Library Fmovies 72

©Name

mw new fmovie - Create a new Fmovie

©Summary

Fmovie mw new fmovie();

©Description

This function creates a new Fmovie structure. It returns NULL if not enough memory is available to
create the structure. Your code should check this value to send an error message in the NULL case, and
do appropriate statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module.

Images have to be allocated using the appropriate functions (See the example below).

©Example

/* Create a movie with 10 images of size (100,100) */

Fmovie movie; /* Internal use: no Input neither Output of module */

Fimage image,image_prev; /* Internal use */

movie = mw_new_fmovie();

if (movie == NULL) mwerror(FATAL,1,"Not enough memory.\n");

for (l=1;l<=10;l++)

{

if ((image = mw_change_fimage(NULL,100,100)) == NULL)

{

mw_delete_fmovie(movie);

mwerror(FATAL,1,"Not enough memory.");

}

if (l == 1) movie->first = image;

else

{

image_prev->next = image;

image->previous = image_prev;

}

image_prev = image;

}

Cfmovies MegaWave2 System Library Cfmovies 73

3.4 Color Float movies

The Color Float Movie memory type corresponds to movies where each images are of the Cfimage memory
type. The use of this memory type is discouraged, since it wastes a lot of memory and computational
time. Use it when you must process data using floating point arithmetic, and when you cannot lose
precision by converting the output to integer values.

3.4.1 The structure Cfmovie

Beginners should focus on the field first only of this structure: if movie is of Cfmovie type, then
movie->first is of Cfimage type and it is the first image of the movie; movie->first->next is the
second image, etc.

typedef struct cfmovie {

float scale; /* Scale (time-domain) of the movie (should be 1) */

char cmt[mw_cmtsize]; /* Comments */

char name[mw_namesize]; /* Name of the image */

Cfimage first; /* Pointer to the first image */

} *Cfmovie;

3.4.2 Related file (external) types

The way MegaWave2 records movies is the following: each image is recorded in a separate file, using one
of the external types available for the corresponding type Cfimage (see section 2.4.2 for more information).
Let suppose that the external name of the movie object is movie. Then, MegaWave2 creates a MegaWave2
Data Ascii file named movie with a def Cfmovie area. In this area is listed the name of the image files,
following the order given by the sequence of images. By changing the order of two file names, you change
the order of the images in the sequence (i.e. the name of the file is not meaningful by itself, for example
the image file name movie_002 may not be the second image of the sequence). There is no limitation for
the number of images, up to the available memory.

Note: there is an old format, which is still recognized for backward compatibility. Is this old format, the
file name movie is empty and the name of each image file is meaningful (e.g. movie_002 is always the
second image of the sequence). In that case, no more than 999 images per movie can be recorded.

3.4.3 Functions Summary

The following is a description of all the functions related to the Cfmovie type. The list is in alphabetical
order.

Cfmovies MegaWave2 System Library Cfmovies 74

©Name

mw change cfmovie - Define the movie structure, if not defined

©Summary

Cfmovie mw change cfmovie(movie)

Cfmovie movie;

©Description

This function returns a movie structure if the input movie = NULL. It is provided despite the mw_new_cfmovie
function for global coherence with other memory types.

The function mw_change_cfmovie returns NULL if not enough memory is available to define the structure.
Your code should check this return value to send an error message in the NULL case, and do appropriate
statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module.

Images have to be allocated using the appropriate functions (See the example below).

©Example

Cfmovie movie=NULL; /* Internal use: no Input neither Output of module */

movie = mw_change_cfmovie(movie);

if (movie == NULL) mwerror(FATAL,1,"Not enough memory.\n");

...

(End of this example as for the mw_new_cfmovie function).

Cfmovies MegaWave2 System Library Cfmovies 75

©Name

mw delete cfmovie - Deallocate all the movie

©Summary

void mw delete cfmovie(movie)

Cfmovie movie;

©Description

This function deallocates all the memory used by a Cfmovie structure: it deallocates the color planes of
all images, the image structures and the movie structure itself.

You should set movie = NULL after this call since the address pointed by movie is no longer valid.

©Example
See the example of the mw_new_cfmovie function: when a memory allocation fails for mw_change_cfimage,
all the previously memory allocations are freed by the call to mw_delete_cfmovie(movie).

Cfmovies MegaWave2 System Library Cfmovies 76

©Name

mw new cfmovie - Create a new Cfmovie

©Summary

Cfmovie mw new cfmovie();

©Description

This function creates a new Cfmovie structure. It returns NULL if not enough memory is available to
create the structure. Your code should check this value to send an error message in the NULL case, and
do appropriate statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module.

Images have to be allocated using the appropriate functions (See the example below).

©Example

/* Create a movie with 10 images of size (100,100) */

Cfmovie movie; /* Internal use: no Input neither Output of module */

Cfimage image,image_prev; /* Internal use */

movie = mw_new_cfmovie();

if (movie == NULL) mwerror(FATAL,1,"Not enough memory.\n");

for (l=1;l<=10;l++)

{

if ((image = mw_change_cfimage(NULL,100,100)) == NULL)

{

mw_delete_cfmovie(movie);

mwerror(FATAL,1,"Not enough memory.");

}

if (l == 1) movie->first = image;

else

{

image_prev->next = image;

image->previous = image_prev;

}

image_prev = image;

}

Signals MegaWave2 System Library Signals 77

4 Signals

We call signal a one-dimensional sequence of scalars. Signals may be used to represent various kind of
physical data (such as sound) , as well as mathematical data (e.g. impulse response of filters, vectors,
. . .).

Notice that at this time, only signals of floating points values are implemented.

4.1 Float signals

The Float Signals memory type is used to represent one-dimensional sequences of floating points values.

4.1.1 The structure Fsignal

Beginners should only focus on the first two fields of this structure:

typedef struct fsignal {

int size; /* Number of samples */

float *values; /* The samples */

float scale; /* Scale of the signal */

float shift; /* shifting of the signal with respect to zero */

float gain; /* Gain of the signal given by the digitalization process */

float sgrate; /* Sampling rate given by the digitalization process */

int bpsample; /* Number of bits per sample for audio drivers */

char cmt[mw_cmtsize]; /* Comments */

char name[mw_namesize]; /* Name of the image */

/* Defines the signifiant part of the signal : */

int firstp; /* index of the first point not aff. by left side effect */

int lastp; /* index of the last point not aff. by right side effect */

float param; /* distance between two succesive uncorrelated points */

} *Fsignal;

The field size gives the number of samples loaded in the signal. Do not change by yourself the content
of this field: the size of the signal has to be modified using functions of the library only (see section 4.1.3
page 78).

The field values is an array which gives the value of each sample: if signal is a variable of Fsignal
type, signal->values[0] is the first sample of the signal, signal->values[1] the second, and so one
up to the last sample signal->values[signal->size-1].

4.1.2 Related file (external) types

The list of the available formats is the following:

1. "A_FSIGNAL" MegaWave2 Data Ascii format with a def fsignal area. This area includes the
value of the different fields of the object, as comments, scale, shift, ... and at the end the

Fsignals MegaWave2 System Library Fsignals 78

samples of the signal. Since this format uses Ascii encoding, you may read or modify the file just
by editing it using a text editor. It can also be plotted using the standard tool gnuplot.

2. "WAVE_PCM" Microsoft’s RIFF WAVE sound file format with PCM encoding. Use this format to
perform sound and speech processing with MegaWave2. Stereo inputs are converted to mono when
loaded into a Fsignal. Since this format performs bit-encoding, on any output Fsignal variables
you should set the field bpsample to the number of bits you want the data to be saved. Default
value is 8×sizeof(float) (on most architectures 32), because this matches the size of the samples
in the Fsignal structure. However, this value leads to strange results on some audio drivers. If
you plan to send the signal on a audio driver, recommended numbers of bits are 16 (signed word)
or 8 (signed char). Take care to format your data to fit the corresponding range before playing the
file ([−32768,+32767] for signed word and [−128,+127] for signed char) or you will not get the
expected sound. Another important field to get the right result is sgrate, where you have to set
the sample rate in Hz that is, the number of samples per second.

4.1.3 Functions Summary

The following is a description of all the functions related to the Fsignal type. The list is in alphabetical
order.

Fsignals MegaWave2 System Library Fsignals 79

©Name

mw alloc fsignal - Allocate the array of values

©Summary

Fsignal mw alloc fsignal(signal,n)

Fsignal signal;

int n;

©Description

This function allocates the array values of a Fsignal structure previously created using mw_new_fsignal.
The size of the signal is given by n, it corresponds to the number of samples.

Values can be addressed after this call, if the allocation successed. There is no default values.

Do not use this function if signal has already an allocated array: use the function mw_change_fsignal

instead.

The function mw_alloc_fsignal returns NULL if not enough memory is available to allocate the array.
Your code should check this return value to send an error message in the NULL case, and do appropriate
statement.

©Example

Fsignal signal=NULL; /* Internal use: no Input neither Output of module */

int i;

/* Create a signal with 1000 samples */

if (((signal = mw_new_fsignal()) == NULL) ||

(mw_alloc_fsignal(signal,1000) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

/* Set the sample #i to the value i */

for (i=0;i<signal->size;i++) signal->values[i] = i;

Fsignals MegaWave2 System Library Fsignals 80

©Name

mw change fsignal - Change the size of the array of values

©Summary

Fsignal mw change fsignal(signal, n)

Fsignal signal;

int n;

©Description

This function changes the memory allocation of the array values of a Fsignal structure, even if no
previously memory allocation was done. The new size of the signal is given by n, it corresponds to the
number of samples.

The function mw_change_fsignal can also create the structure if the input signal = NULL. Therefore,
this function can replace both mw_new_fsignal and mw_alloc_fsignal. It is the recommended function
to set signal size of input/output modules. Since the function can set the address of signal, the variable
must be set to the return value of the function (See example below).

The function mw_change_fsignal returns NULL if not enough memory is available to allocate the array.
Your code should check this return value to send an error message in the NULL case, and do appropriate
statement.

©Example

Fsignal Output; /* Output of module */

/* Set the size of the signal to be 1000 */

Output = mw_change_fsignal(Output, 1000);

if (Output == NULL) mwerror(FATAL,1,"Not enough memory.\n");

Fsignals MegaWave2 System Library Fsignals 81

©Name

mw clear fsignal - Clear all values

©Summary

void mw clear fsignal(signal, v)

Fsignal signal;

float v;

©Description

This function fills the fsignal signal with the value given by v: all samples will have the value v.

©Example

Fsignal signal; /* Output of module */

signal = mw_change_fsignal(signal, 1000);

if (signal == NULL) mwerror(FATAL,1,"Not enough memory.\n");

/* Set all samples to 0.0 */

mw_clear_fsignal(signal,0.0);

Fsignals MegaWave2 System Library Fsignals 82

©Name

mw copy fsignal - Copy a signal into another one

©Summary

void mw copy fsignal(in, out)

Fsignal in,out;

©Description

This function copies the header and the content of the array values of the signal in into the corresponding
fields of the signal out. The size of the two signals must be the same (this implies the out signal to be
allocated).

The speed of this function depends to the C library implementation, but it is usually very fast (trying to
do faster is a waste of time).

©Example

Fsignal G; /* Needed Input */

Fsignal F; /* Optional Output */

if (F) {

printf("F option is active: copy G in F\n");

if ((F = mw_change_fsignal(F, G->size)) == NULL)

mwerror(FATAL,1,"Not enough memory.\n");

else mw_copy_fsignal(G, F);

}

else printf("F option is not active\n");

Fsignals MegaWave2 System Library Fsignals 83

©Name

mw delete fsignal - Deallocate the signal

©Summary

void mw delete fsignal(signal)

Fsignal signal;

©Description

This function deallocates the array values of a Fsignal structure previously allocated using mw_alloc_fsignal
or mw_change_fsignal, and the structure itself.

You should set signal = NULL after this call since the address pointed by signal is no longer valid.

©Example

Fsignal signal=NULL; /* Internal use: no Input neither Output of module */

if (((signal = mw_new_fsignal()) == NULL) ||

(mw_alloc_fsignal(signal,1000) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

.

.

.

mw_delete_fsignal(signal);

signal = NULL;

Fsignals MegaWave2 System Library Fsignals 84

©Name

mw new fsignal - Create a new Fsignal

©Summary

Fsignal mw new fsignal();

©Description

This function creates a new Fsignal structure with an empty array values. No samples can be ad-
dressed at this time. The array values should be allocated using the function mw_alloc_fsignal or
mw_change_fsignal.

Do not use this function for input/output of modules, since the MegaWave2 Compiler already created the
structure for you if you need it (See Volume one: “MegaWave2 User’s Guide”). Use instead the function
mw_change_fsignal. Do not forget to deallocate the internal structures before the end of the module.

The function mw_new_fsignal returns NULL if not enough memory is available to create the structure.
Your code should check this value to send an error message in the NULL case, and do appropriate statement.

©Example

Fsignal signal=NULL; /* Internal use: no Input neither Output of module */

if (((signal = mw_new_fsignal()) == NULL) ||

(mw_alloc_fsignal(signal,1000) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

Wavelets MegaWave2 System Library Wavelets 85

5 Wavelets

The wavelet memory types are used to represent the result of a wavelet transform applied to some data.
The data can be a signal, in this case the operation is called a one-dimensional wavelet tranform, or it
can be an image. In that case, the operation is called a two-dimensional wavelet transform. Operations
on data of higher dimension are not supported at this time.

A wavelet transform is a time-scale operator: it adds therefore one dimension to the data (the scale).
The meaning of the wavelet coefficients recorded into a wavelet-type variable depends to the choice of
the discretization. The finest one is known as the continuous wavelet transform: several voices per octave
can be computed for the scale. The orthogonal (or biorthogonal) wavelet transform allows to decompose
the data into an orthogonal (or biorthogonal) basis: a wavelet coefficient corresponds to a scalar product.
In this case, only one voice per octave is computed and a decimation is achieved on the time (or space)
domain. The dyadic wavelet transform computes also only one voice per octave, but without decimation
along the time axis. It corresponds to a decomposition into wavelets which generate a frame. It is often
used to obtain a translation-invariant representation, from which the wavelet maxima representation can
be deduced.

5.1 One-dimensional wavelet

The One-dimensional wavelet memory type is used to represent the result of a wavelet transform applied
to a signal.

5.1.1 The structure Wtrans1d

The C structure is the following:

char cmt[mw_cmtsize]; /* Comments */

char name[mw_namesize]; /* Name of the wtrans1d */

int type; /* Type of the wtrans1d performed */

int edges; /* Type of the edges statments */

char filter_name[mw_namesize][mw_max_nfilter_1d]; /* Filters used */

int size; /* Size of the original signal */

int nlevel; /* Number of levels (octave) for this decomposition */

int nvoice; /* Number of voices per octave for this decomposition */

int complex; /* 1 if the wavelet is complex that is, if P[][] is used */

int nfilter; /* Number of filters used to compute the decomposition */

Fsignal A[mw_max_nlevel+1][mw_max_nvoice]; /* Average or low-pass signals */

Fsignal AP[mw_max_nlevel+1][mw_max_nvoice];/* Phase of the average */

Fsignal D[mw_max_nlevel+1][mw_max_nvoice]; /* Detail or wavelet coefficients*/

Fsignal DP[mw_max_nlevel+1][mw_max_nvoice];/* Phase of the Detail */

} *Wtrans1d;

The first two fields of this structure is well known by the reader. The field type records the type of the
wavelet transform used. Its value can be:

• mw_orthogonal : orthogonal wavelet transform;

Wtrans1d MegaWave2 System Library Wtrans1d 86

• mw_biorthogonal : biorthogonal wavelet transform;

• mw_dyadic : dyadic wavelet transform;

• mw_continuous : continuous wavelet transform.

The field edges gives the type of the edges statment used to compute the transformation. Indeed, since
it is implemented as a bank of convolution products, errors occur near the borders if no special statment
is performed. This field can have the following values:

• mw_edges_zeropad : the signal is zero-padded (no special statment);

• mw_edges_periodic : the signal is made periodic;

• mw_edges_mirror : the signal is padded by mirror effect (avoid first-order discontinuities);

• mw_edges_wadapted : special border functions are added to the wavelets (wavelets on the interval).

The field filter_name is an array of strings, where the names of the filters used for the decomposition
are put. The number of filters is put into the field nfilter. This number and the meaning of each filter
depend to the wavelet type.

The field size contains the size of the original signal, which is put into average[0][0] (see below). The
field nlevel is the number of levels used in this decomposition; it corresponds to the number of octaves;
nvoice is the number of voices per octave. The field complex is set to 1 when the wavelet used has
complex values, 0 elsewhere.

The result of the wavelet decomposition is put into two two-dimensional arrays of signals called A and D:
A[l][v] for l = 0 . . . nlevel and for v = 0 . . .nvoice− 1 is the low-pass signal at the octave l and at the
voice v, that is the signal at the scale 2(l+v/nvoice). The signal A[0][0] is the original signal, A[0][1] is

the smoothed signal at the scale 2
1

nvoice , etc. D[l][v] for l = 0 . . . nlevel and for v = 0 . . . nvoice− 1
is the band-pass (or detail) signal at the octave l and at the voice v, that is the wavelet coefficients signal

at the scale 2(l+v/nvoice). The signal D[0][0] is unused.

When the wavelet is complex, the fields A and D represent the modulus values only; the phase values is
put in the fields AP and DP.

5.1.2 Related file (external) types

The list of the available formats is the following:

1. "A_WTRANS1D" MegaWave2 Data Ascii format with a def Wtrans1d area. This area includes the
value of the different fields of the object, as comments, type, edges, The values of the
wavelet coefficients are not recorded in this file, but in a set of Fimage objects. Let be wavelet

the name of the object. The names of these image files are, for <j> the level number (octave) and
<v> the voice number,

• wavelet_<j>_A.wtrans1d Average field of the object (voice 0);

• wavelet_<j>.<v>_A.wtrans1d Average field of the object (voice > 0);

• wavelet_<j>_AP.wtrans1d Phase of the Average field of the object (voice 0);

• wavelet_<j>.<v>_AP.wtrans1d Phase of the Average field of the object (voice > 0);

• wavelet_<j>_D.wtrans1d Detail field of the object (voice 0);

• wavelet_<j>.<v>_D.wtrans1d Detail field of the object (voice > 0);

• wavelet_<j>_DP.wtrans1d Phase of the Detail field of the object (voice 0);

Wtrans1d MegaWave2 System Library Wtrans1d 87

• wavelet_<j>.<v>_DP.wtrans1d Phase of the Detail field of the object (voice > 0).

Notice that, regarding to the type of the wavelet transform, only a subset of those files may be
generated.

5.1.3 Functions Summary

The following is a description of all the functions related to the Wtrans1d type. The list is in alphabetical
order.

Wtrans1d MegaWave2 System Library Wtrans1d 88

©Name

mw alloc biortho wtrans1d - Allocate the arrays of the decomposition

©Summary

void *mw alloc biortho wtrans1d(wtrans,level,size)

Wtrans1d wtrans;

int level;

int size;

©Description

This function allocates the arrays A and D of a Wtrans1d structure previously created using mw_new_wtrans1d,
in order to receive an biorthonormal wavelet representation (one voice per octave, decimation along the
time axis). Each signal A[l][v] and D[l][v] for l = 0 . . . nlevel, v = 0 . . .nvoice− 1 ((l, v) 6= (0, 0)) is
created and allocated to the right size. Previously allocations are deleted, if any.

The number of levels for the decomposition is given by level and the size of the original signal is given
by size.

The arrays A and D can be addressed after this call, if the allocation successed. There is no default values
for the signals. The type field of the Wtrans1d structure is set to mw_biorthogonal.

The function mw_alloc_biortho_wtrans1d returns NULL if not enough memory is available to allocate
one of the signals. Your code should check this return value to send an error message in the NULL case,
and do appropriate statement.

Notice that, if the wavelet transform is an output of a MegaWave2 module, the structure has been
already created by the compiler if needed (See Volume one: “MegaWave2 User’s Guide”): do not perform
additional call to mw_new_wtrans1d (see example below).

©Example

Wtrans1d Output; /* optional Output of the module */

Fsignal Signal; /* needed Input of the module: original signal */

int J; /* internal use */

if (Output)

{

/* Output requested : allocate Output for 8 levels of decomposition */

if(mw_alloc_biortho_wtrans1d(Output, 8, Signal->size)==NULL)

mwerror(FATAL,1,"Not enough memory.\n");

Output->A[0][0] = Signal;

Wtrans1d MegaWave2 System Library Wtrans1d 89

for (J = 1; J <= 8; J++)

{

.

. (Computation of the voice #J)

.

}

}

Wtrans1d MegaWave2 System Library Wtrans1d 90

©Name

mw alloc continuous wtrans1d - Allocate the arrays of the decomposition

©Summary

void *mw alloc continuous wtrans1d(wtrans,level,voice,size,complex)

Wtrans1d wtrans;

int level;

int voice;

int size;

int complex;

©Description

This function allocates the arrays D of a Wtrans1d structure previously created using mw_new_wtrans1d,
in order to receive an continuous wavelet representation (several voices per octave, no decimation along
the time axis, wavelet with complex or real values). The arrays DP are allocated if complex is set to
1. Each signal D[l][v] (and DP[l][v] in the complex case) for l = 0 . . . nlevel, v = 0 . . . nvoice − 1
((l, v) 6= (0, 0)) is created and allocated to the right size. Previously allocations are deleted, if any. Notice
that, at this time, there is no function to allocate a continuous wavelet transform recording the low-pass
signals (A and AP).

The number of levels for the decomposition is given by level, the number of voice per octave is given by
voice and the size of the original signal is given by size.

The arrays D and DP can be addressed after this call, if the allocation successed. There is no default
values for the signals. The type field of the Wtrans1d structure is set to mw_continuous.

The function mw_alloc_continuous_wtrans1d returns NULL if not enough memory is available to allocate
one of the signals. Your code should check this return value to send an error message in the NULL case,
and do appropriate statement.

Notice that, if the wavelet transform is an output of a MegaWave2 module, the structure has been
already created by the compiler if needed (See Volume one: “MegaWave2 User’s Guide”): do not perform
additional call to mw_new_wtrans1d (see example below).

©Example

Wtrans1d Output; /* optional Output of the module */

Fsignal Signal; /* needed Input of the module: original signal */

int J; /* internal use */

if (Output)

Wtrans1d MegaWave2 System Library Wtrans1d 91

{

/* Output requested : allocate Output for 8 levels of decomposition

and 10 voices per octave, complex wavelet.

*/

if(mw_alloc_continuous_wtrans1d(Output, 8, 10, Signal->size,1)==NULL)

mwerror(FATAL,1,"Not enough memory.\n");

for (J = 1; J <= 8; J++)

{

.

. (Computation of the voice #J)

.

}

}

Wtrans1d MegaWave2 System Library Wtrans1d 92

©Name

mw alloc dyadic wtrans1d - Allocate the arrays of the decomposition

©Summary

void *mw alloc dyadic wtrans1d(wtrans,level,size)

Wtrans1d wtrans;

int level;

int size;

©Description

This function allocates the arrays A and D of a Wtrans1d structure previously created using mw_new_wtrans1d,
in order to receive an dyadic wavelet representation (one voice per octave, no decimation along the time
axis). Each signal A[l][v] and D[l][v] for l = 0 . . . nlevel, v = 0 . . . nvoice − 1 ((l, v) 6= (0, 0)) is
created and allocated to the right size. Previously allocations are deleted, if any.

The number of levels for the decomposition is given by level and the size of the original signal is given
by size.

The arrays A and D can be addressed after this call, if the allocation successed. There is no default values
for the signals. The type field of the Wtrans1d structure is set to mw_dyadic.

The function mw_alloc_dyadic_wtrans1d returns NULL if not enough memory is available to allocate
one of the signals. Your code should check this return value to send an error message in the NULL case,
and do appropriate statement.

Notice that, if the wavelet transform is an output of a MegaWave2 module, the structure has been
already created by the compiler if needed (See Volume one: “MegaWave2 User’s Guide”): do not perform
additional call to mw_new_wtrans1d (see example below).

©Example

Wtrans1d Output; /* optional Output of the module */

Fsignal Signal; /* needed Input of the module: original signal */

int J; /* internal use */

if (Output)

{

/* Output requested : allocate Output for 8 levels of decomposition */

if(mw_alloc_dyadic_wtrans1d(Output, 8, Signal->size)==NULL)

mwerror(FATAL,1,"Not enough memory.\n");

Output->A[0][0] = Signal;

Wtrans1d MegaWave2 System Library Wtrans1d 93

for (J = 1; J <= 8; J++)

{

.

. (Computation of the voice #J)

.

}

}

Wtrans1d MegaWave2 System Library Wtrans1d 94

©Name

mw alloc ortho wtrans1d - Allocate the arrays of the decomposition

©Summary

void *mw alloc ortho wtrans1d(wtrans,level,size)

Wtrans1d wtrans;

int level;

int size;

©Description

This function allocates the arrays A and D of a Wtrans1d structure previously created using mw_new_wtrans1d,
in order to receive an orthonormal wavelet representation (one voice per octave, decimation along the
time axis). Each signal A[l][v] and D[l][v] for l = 0 . . . nlevel, v = 0 . . .nvoice− 1 ((l, v) 6= (0, 0)) is
created and allocated to the right size. Previously allocations are deleted, if any.

The number of levels for the decomposition is given by level and the size of the original signal is given
by size.

The arrays A and D can be addressed after this call, if the allocation successed. There is no default values
for the signals. The type field of the Wtrans1d structure is set to mw_orthogonal.

The function mw_alloc_ortho_wtrans1d returns NULL if not enough memory is available to allocate one
of the signals. Your code should check this return value to send an error message in the NULL case, and
do appropriate statement.

Notice that, if the wavelet transform is an output of a MegaWave2 module, the structure has been
already created by the compiler if needed (See Volume one: “MegaWave2 User’s Guide”): do not perform
additional call to mw_new_wtrans1d (see example below).

©Example

Wtrans1d Output; /* optional Output of the module */

Fsignal Signal; /* needed Input of the module: original signal */

int J; /* internal use */

if (Output)

{

/* Output requested : allocate Output for 8 levels of decomposition */

if(mw_alloc_ortho_wtrans1d(Output, 8, Signal->size)==NULL)

mwerror(FATAL,1,"Not enough memory.\n");

Output->A[0][0] = Signal;

Wtrans1d MegaWave2 System Library Wtrans1d 95

for (J = 1; J <= 8; J++)

{

.

. (Computation of the voice #J)

.

}

}

Wtrans1d MegaWave2 System Library Wtrans1d 96

©Name

mw delete wtrans1d - Deallocate the wavelet transform space

©Summary

void mw delete wtrans1d(wtrans)

Wtrans1d wtrans;

©Description

This function deallocates the memory used by the wavelet transform space wtrans that is, all the memory
used by the arrays of signals A, AP, D, DP (if any), and the structure itself.

You should set wtrans = NULL after this call since the address pointed by wtrans is no longer valid.

©Example

Wtrans1d wtrans=NULL; /* Internal use: no Input neither Output of module */

if (((wtrans = mw_new_wtrans1d()) == NULL) ||

(mw_alloc_ortho_wtrans1d(wtrans, 8, 1024)==NULL))

mwerror(FATAL,1,"Not enough memory.\n");

.

.

.

mw_delete_wtrans1d(wtrans);

wtrans = NULL;

Wtrans1d MegaWave2 System Library Wtrans1d 97

©Name

mw new wtrans1d - Create a new Wtrans1d

©Summary

Wtrans1d mw new wtrans1d();

©Description

This function creates a new Wtrans1d structure with empty arrays of signals A, AP, D, DP. No signal
can be addressed at this time. The arrays of signals should be allocated using one of the functions
mw_alloc_X_wtrans1d where X depends of the type of the transformation.

You don’t need this function for input/output of modules, since the MegaWave2 Compiler already created
the structure for you if you need it (See Volume one: “MegaWave2 User’s Guide”). This function is used
to create internal variables. Do not forget to deallocate the internal structures before the end of the
module.

The function mw_new_wtrans1d returns NULL if not enough memory is available to create the structure.
Your code should check this value to send an error message in the NULL case, and do appropriate statement.

©Example

Wtrans1d wtrans=NULL; /* Internal use: no Input neither Output of module */

if (((wtrans = mw_new_wtrans1d()) == NULL) ||

(mw_alloc_continuous_wtrans1d(wtrans, 8, 10, 1024)))

mwerror(FATAL,1,"Not enough memory.\n");

Wtrans2d MegaWave2 System Library Wtrans2d 98

5.2 Two-dimensional wavelet

The Two-dimensional wavelet memory type is used to represent the result of a wavelet transform applied
to an image. Notice that, at this time, the structure does not allow to record more than one voice per
octave for the decomposition. Consequently, the continuous wavelet transform is not available in the 2D
case. The wavelet is also assumed to be of real values (complex case not supported).

5.2.1 The structure Wtrans2d

The C structure is the following:

char cmt[mw_cmtsize]; /* Comments */

char name[mw_namesize]; /* Name of the wtrans2d */

int type; /* Type of the wtrans2d performed */

int edges; /* Type of the edges statments */

char filter_name[mw_namesize][mw_max_nfilter_2d]; /* Filters used */

int nrow;

int ncol; /* Size of the original image */

int nlevel; /* Number of levels (octave) for this decomposition */

int norient; /* Number of orientations for this decomposition */

int nfilter; /* Number of filters used to compute the decomposition */

Fimage images[mw_max_nlevel+1][mw_max_norient+1]; /* Wavelet decomposition space */

} *Wtrans2d;

The first two fields of this structure is well known by the reader. The field type records the type of the
wavelet transform used. Its value can be:

• mw_orthogonal : orthogonal wavelet transform;

• mw_biorthogonal : biorthogonal wavelet transform;

• mw_dyadic : dyadic wavelet transform.

The field edges gives the type of the edges statment used to compute the transformation. Indeed, since
it is implemented as a bank of convolution products, errors occur near the borders if no special statment
is performed. This field can have the following values:

• mw_edges_zeropad : the image is zero-padded (no special statment);

• mw_edges_periodic : the image is made periodic;

• mw_edges_mirror : the image is padded by mirror effect (avoid first-order discontinuities);

• mw_edges_wadapted : special border functions are added to the wavelets (wavelets on the rectan-
gle).

The field filter_name is an array of strings, where the names of the filters used for the decomposition
are put. The number of filters is put into the field nfilter. This number and the meaning of each filter
depend to the wavelet type.

Wtrans2d MegaWave2 System Library Wtrans2d 99

The fields nrow (number of rows) and ncol (number of columns) contain the size of the original image,
which is put into images[0][0] (see below). The field nlevel is the number of levels used in this
decomposition; it corresponds to the number of octaves.

The field norient gives the number of orientations used for the decomposition; usually (but the user
may modify that) the first orientation (index r = 0 in the array images[][r]) corresponds to the coarse
image at the given resolution (low-pass image or smooth image); the second orientation (index r = 1)
corresponds to the detail image (wavelet coefficients) along the y direction (horizontal details); the third
orientation (index r = 2) corresponds to the detail image (wavelet coefficients) along the x direction
(vertical details); in the orthonormal and biorthonormal cases, there is another direction (index r = 3)
which corresponds to the detail image (wavelet coefficients) along the diagonal direction (cross details).

The result of the wavelet decomposition is put into one two-dimensional arrays of images called images:
images[l][r] for l = 1 . . . nlevel and for r = 0 . . . norient is the coarse or the detail image at the
octave l and at the orientation r.

Notice that the images images[0][r] are unused except for r = 0.

5.2.2 Related file (external) types

The list of the available formats is the following:

1. "A_WTRANS2D" MegaWave2 Data Ascii format with a def Wtrans2d area. This area includes the
value of the different fields of the object, as comments, type, edges, The values of the
wavelet coefficients are not recorded in this file, but in a set of Fimage objects. Let be wavelet

the name of the object. The names of these image files are, for <j> the level number (octave) and
<r> the orientation number,

• wavelet_<j>_S.wtrans2d Average image of the object (<r> = 0);

• wavelet_<j>_D<r>.wtrans2d Detail image of the object (<r> > 0).

5.2.3 Functions Summary

The following is a description of all the functions related to the Wtrans2d type. The list is in alphabetical
order.

Wtrans2d MegaWave2 System Library Wtrans2d 100

©Name

mw alloc biortho wtrans2d - Allocate the arrays of the decomposition

©Summary

void *mw alloc biortho wtrans2d(wtrans,level,nrow,ncol)

Wtrans2d wtrans;

int level;

int nrow,ncol;

©Description

This function allocates the array images of a Wtrans2d structure previously created using mw_new_wtrans2d,
in order to receive an biorthonormal wavelet representation (spatial decimation, norient = 3). Each im-
age images[l][r] for l = 1 . . . nlevel, r = 0 . . . norient is created and allocated to the right size.
Previously allocations are deleted, if any.

The number of levels for the decomposition is given by level and the size of the original image is given
by nrow (number of rows), ncol (number of columns).

The array images can be addressed after this call, if the allocation successed. There is no default values
for the images. The type field of the Wtrans2d structure is set to mw_biorthogonal.

The function mw_alloc_biortho_wtrans2d returns NULL if not enough memory is available to allocate
one of the images. Your code should check this return value to send an error message in the NULL case,
and do appropriate statement.

Notice that, if the wavelet transform is an output of a MegaWave2 module, the structure has been
already created by the compiler if needed (See Volume one: “MegaWave2 User’s Guide”): do not perform
additional call to mw_new_wtrans2d (see example below).

©Example

Wtrans2d Output; /* optional Output of the module */

Fimage Image; /* needed Input of the module: original image */

int J; /* internal use */

if (Output)

{

/* Output requested : allocate Output for 8 levels of decomposition */

if(mw_alloc_biortho_wtrans2d(Output, 8, Image->nrow, Image->ncol)==NULL)

mwerror(FATAL,1,"Not enough memory.\n");

Output->images[0][0] = Image;

Wtrans2d MegaWave2 System Library Wtrans2d 101

for (J = 1; J <= 8; J++)

{

.

. (Computation of the voice #J)

.

}

}

Wtrans2d MegaWave2 System Library Wtrans2d 102

©Name

mw alloc dyadic wtrans2d - Allocate the arrays of the decomposition

©Summary

void *mw alloc dyadic wtrans2d(wtrans,level,nrow,ncol)

Wtrans2d wtrans;

int level;

int nrow,ncol;

©Description

This function allocates the array images of a Wtrans2d structure previously created using mw_new_wtrans2d,
in order to receive an dyadic wavelet representation (no spatial decimation, norient = 2). Each image
images[l][r] for l = 1 . . . nlevel, r = 0 . . . norient is created and allocated to the right size. Previously
allocations are deleted, if any.

The number of levels for the decomposition is given by level and the size of the original image is given
by nrow (number of rows), ncol (number of columns).

The array images can be addressed after this call, if the allocation successed. There is no default values
for the images. The type field of the Wtrans2d structure is set to mw_dyadic.

The function mw_alloc_dyadic_wtrans2d returns NULL if not enough memory is available to allocate
one of the images. Your code should check this return value to send an error message in the NULL case,
and do appropriate statement.

Notice that, if the wavelet transform is an output of a MegaWave2 module, the structure has been
already created by the compiler if needed (See Volume one: “MegaWave2 User’s Guide”): do not perform
additional call to mw_new_wtrans2d (see example below).

©Example

Wtrans2d Output; /* optional Output of the module */

Fimage Image; /* needed Input of the module: original image */

int J; /* internal use */

if (Output)

{

/* Output requested : allocate Output for 8 levels of decomposition */

if(mw_alloc_dyadic_wtrans2d(Output, 8, Image->nrow, Image->ncol)==NULL)

mwerror(FATAL,1,"Not enough memory.\n");

Output->images[0][0] = Image;

Wtrans2d MegaWave2 System Library Wtrans2d 103

for (J = 1; J <= 8; J++)

{

.

. (Computation of the voice #J)

.

}

}

Wtrans2d MegaWave2 System Library Wtrans2d 104

©Name

mw alloc ortho wtrans2d - Allocate the arrays of the decomposition

©Summary

void *mw alloc ortho wtrans2d(wtrans,level,nrow,ncol)

Wtrans2d wtrans;

int level;

int nrow,ncol;

©Description

This function allocates the array images of a Wtrans2d structure previously created using mw_new_wtrans2d,
in order to receive an orthonormal wavelet representation (spatial decimation, norient = 3). Each image
images[l][r] for l = 1 . . . nlevel, r = 0 . . . norient is created and allocated to the right size. Previously
allocations are deleted, if any.

The number of levels for the decomposition is given by level and the size of the original image is given
by nrow (number of rows), ncol (number of columns).

The array images can be addressed after this call, if the allocation successed. There is no default values
for the images. The type field of the Wtrans2d structure is set to mw_orthogonal.

The function mw_alloc_ortho_wtrans2d returns NULL if not enough memory is available to allocate one
of the images. Your code should check this return value to send an error message in the NULL case, and
do appropriate statement.

Notice that, if the wavelet transform is an output of a MegaWave2 module, the structure has been
already created by the compiler if needed (See Volume one: “MegaWave2 User’s Guide”): do not perform
additional call to mw_new_wtrans2d (see example below).

©Example

Wtrans2d Output; /* optional Output of the module */

Fimage Image; /* needed Input of the module: original image */

int J; /* internal use */

if (Output)

{

/* Output requested : allocate Output for 8 levels of decomposition */

if(mw_alloc_ortho_wtrans2d(Output, 8, Image->nrow, Image->ncol)==NULL)

mwerror(FATAL,1,"Not enough memory.\n");

Output->images[0][0] = Image;

Wtrans2d MegaWave2 System Library Wtrans2d 105

for (J = 1; J <= 8; J++)

{

.

. (Computation of the voice #J)

.

}

}

Wtrans2d MegaWave2 System Library Wtrans2d 106

©Name

mw delete wtrans2d - Deallocate the wavelet transform space

©Summary

void mw delete wtrans2d(wtrans)

Wtrans2d wtrans;

©Description

This function deallocates the memory used by the wavelet transform space wtrans that is, all the memory
used by the array of images images (if any), and the structure itself.

You should set wtrans = NULL after this call since the address pointed by wtrans is no longer valid.

©Example

Wtrans2d wtrans=NULL; /* Internal use: no Input neither Output of module */

if (((wtrans = mw_new_wtrans2d()) == NULL) ||

(mw_alloc_ortho_wtrans2d(wtrans, 6, 512, 512)==NULL))

mwerror(FATAL,1,"Not enough memory.\n");

.

.

.

mw_delete_wtrans2d(wtrans);

wtrans = NULL;

Wtrans2d MegaWave2 System Library Wtrans2d 107

©Name

mw new wtrans2d - Create a new Wtrans2d

©Summary

Wtrans2d mw new wtrans2d();

©Description

This function creates a new Wtrans2d structure with empty array of images images. No image can be ad-
dressed at this time. The array of images should be allocated using one of the functions mw_alloc_X_wtrans2d
where X depends of the type of the transformation.

You don’t need this function for input/output of modules, since the MegaWave2 Compiler already created
the structure for you if you need it (See Volume one: “MegaWave2 User’s Guide”). This function is used
to create internal variables. Do not forget to deallocate the internal structures before the end of the
module.

The function mw_new_wtrans2d returns NULL if not enough memory is available to create the structure.
Your code should check this value to send an error message in the NULL case, and do appropriate statement.

©Example

Wtrans2d wtrans=NULL; /* Internal use: no Input neither Output of module */

if (((wtrans = mw_new_wtrans2d()) == NULL) ||

(mw_alloc_dyadic_wtrans2d(wtrans, 6, 512, 512)))

mwerror(FATAL,1,"Not enough memory.\n");

Geometrical srtuctures MegaWave2 System Library Geometrical srtuctures 108

6 Geometrical structures : Point, Curves, Polygons and Lists

The family of curves, polygons and lists objects are mainly used to handle geometrical processes, as
mathematical morphology algorithms, shape analysis, snakes, . . .

In MegaWave2, a curve (section 6.2) is a set of points in the plane that is, a set of (x, y) coordinates.
Although there is no such explicit condition in the system library, most modules assume that this set is
really a curve, meaning that points are adjacent for the 4 or 8-connectivity, and that the dimension of
the set is less than 2. For a two-dimensional set of points, to avoid memory blowup, consider the segment
structure (Section 7.4). A curve is implemented as a chain of points: the curve begins with a first point,
from which we can go to the next point, and so one up to the last point. There is no condition set about
the geometry of the curve (e.g. the curve can cut itself) but your algorithm may want to put some. There
is no an a priori rule to interpolate the curve between two adjacent points in the chain, in the case where
they are not adjacent in the plane. Your algorithm may have to process such interpolation.

You may want to handle a set of curves (it can be for example the result of an edge detector applied to
an image). Such object is also provided in MegaWave2 (section 6.3) and it is implemented as a chain of
curves.

What we call polygon (section 6.4) is basically a closed curve that is, a chain of (x, y) coordinates where
the point next the last point is assumed to be the first point. But one can associate to a polygon a list of
real parameters. It can be, for example, only one value which gives the gray level of the constant region
delimited by the closed curve. The meaning of the parameters is not pre-defined, so you can used it freely
in your algorithms.

You may also want to handle a set of polygons (it can be for example the result of a region-segmentation
algorithm applied to an image). This object, explained in section 6.5, is of course implemented as a chain
of polygons.

All of the objects we have enumerated can record integer or real coordinates (for some applications, you
may need real coordinates - e.g. when you compute a P.D.E. to evolve a curve -). In the following,
we give a full description of the objects for which coordinates are integers. By putting a F (floating-
point precision) or D (double) at the beginning of the curve and polygon object’s name, you get the
corresponding object with real coordinates fields (see section 6.6 for a short description).

We shall begin our description by the basic object used by curves and polygons: the point.

6.1 Point of a planar curve

A Point curve is nothing more than two coordinates (x, y) which can be linked to a previous and to a
next Point curve, in order to constitute a curve.

6.1.1 The structure Point curve

This is the C definition of the structure:

typedef struct point_curve {

int x,y; /* Coordinates of the point */

/* For use in Curve only */

struct point_curve *previous; /*Pointer to the previous point (may be NULL)*/

struct point_curve *next; /* Pointer to the next point (may be NULL) */

} *Point_curve;

Point curve MegaWave2 System Library Point curve 109

The first two fields x and y are the coordinates (x, y) of the point in the plane. Since the Curve and the
Polygon structures are defined as a chain of Point curve, there are two pointers previous and next

associated to each point.

6.1.2 Related file (external) types

Not available: at this time, the Point curve object cannot be used as input/output variables of modules.

6.1.3 Functions Summary

The following is a description of all the functions related to the Point curve type. The list is in alpha-
betical order.

Point curve MegaWave2 System Library Point curve 110

©Name

mw change point curve - Define the point curve structure, if not defined

©Summary

Point curve mw change point curve(point)

Point curve point;

©Description

This function returns a Point curve structure if the input point = NULL. It is provided despite the
mw_new_point_curve function for global coherence with other memory types.

The function mw_change_point_curve returns NULL if not enough memory is available to allocate the
structure. Your code should check this return value to send an error message in the NULL case, and do
appropriate statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module, except if they are part of an input or
output chain.

©Example

Point_curve point=NULL; /* Internal use: no Input neither Output of module */

/* Define the point (5,1) of the plane */

point = mw_change_point_curve(point);

if (point == NULL) mwerror(FATAL,1,"Not enough memory.\n");

point->x = 5;

point->y = 1;

Point curve MegaWave2 System Library Point curve 111

©Name

mw copy point curve - Copy all points starting from the given one

©Summary

Point curve mw copy point curve(in,out)

Point curve in, out;

©Description

This function copies the current point and the next points contained in the chain defined at the starting
point in. The result is put in out, which may not be a predefined structure : in case of out=NULL, the
out structure is allocated.

The function mw_copy_point_curve returns NULL if not enough memory is available to perform the copy,
or out elsewhere. Your code should check this return value to send an error message in the NULL case,
and do appropriate statement.

©Example

Point_curve in; /* Predefined point */

Point_curve out=NULL;

out=mw_copy_point_curve(in,out);

if (!out) mwerror(FATAL,1,"Not enough memory.\n");

Point curve MegaWave2 System Library Point curve 112

©Name

mw delete point curve - Deallocate the point curve structure

©Summary

void mw delete point curve(point)

Point curve point;

©Description

This function deallocates the Point curve structures starting from the given point, including this point
itself. You should set point = NULL after this call since the address pointed by point is no longer valid.
Warning : to deallocate only a point and not all the next points of a chain, just use free(point).

©Example

/* Remove the first point of an existing curve */

Curve curve; /* Existing curve (e.g. Input of module) */

Point_curve point; /* Internal use */

point = curve->first;

curve->first=point->next;

point->next->previous = NULL;

free(point);

point = NULL;

/* Remove all points of an existing curve */

mw_delete_point_curve(curve->first);

Point curve MegaWave2 System Library Point curve 113

©Name

mw new point curve - Create a new point curve structure

©Summary

Point curve mw new point curve();

©Description

This function creates a new Point curve structure. It returns NULL if not enough memory is available to
create the structure. Your code should check this value to send an error message in the NULL case, and
do appropriate statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal point structures before the end of the module, except if they are part of an
input or output curve.

©Example

/* Insert the point (0,0) at the end of an existing curve */

Curve curve; /* Existing curve (e.g. Input of module) */

Point_curve point,p; /* Internal use: no Input neither Output of module */

/* Define the point (0,0) */

point = mw_new_point_curve();

if (point == NULL) mwerror(FATAL,1,"Not enough memory.\n");

point->x = point->y = 0;

point->next = NULL;

/* Find the last point of the curve */

p = curve->first; while (p->next) p=p->next;

/* Insert the point */

p->next = point;

point->previous = p;

/* Do not deallocate point or curve will become inconsistent */

Curve MegaWave2 System Library Curve 114

6.2 Planar curve

You may want to use the Curve memory type each type you need to constitute a chain of (x, y) coordinates.

6.2.1 The structure Curve

If curve is of Curve memory type, then curve->first is of Point curvememory type and it is the first
point of the curve; curve->first->next is the second point, etc. The end of the curve occurs when the
next field of a point is NULL.

typedef struct curve {

Point_curve first; /* Pointer to the first point of the curve */

/* For use in Curves only */

struct curve *previous; /* Pointer to the previous curve (may be NULL) */

struct curve *next; /* Pointer to the next curve (may be NULL) */

} *Curve;

You may notice that the Curvetype includes also the fields previous and next, as the Point curvetype.
This is because curves can be linked together to define a set of curves (See 6.2.3 page 114). If the curve
is not part of a set, those pointers must be NULL.

6.2.2 Related file (external) types

The list of the available formats is the following:

1. "MW2_CURVE" MegaWave2 binary format.

6.2.3 Functions Summary

The following is a description of all the functions related to the Curve type. The list is in alphabetical
order.

Curve MegaWave2 System Library Curve 115

©Name

mw change curve - Define the curve structure, if not defined

©Summary

Curve mw change curve(curve)

Curve curve;

©Description

This function returns a Curve structure if the input curve = NULL. It is provided despite the mw_new_curve
function for global coherence with other memory types.

The function mw_change_curve returns NULL if not enough memory is available to allocate the structure.
Your code should check this return value to send an error message in the NULL case, and do appropriate
statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal curve structures before the end of the module, except if they are part of an
input or output chain.

©Example

/* Define a curve with 10 points which is the straight line (0,0)-(9,9) */

Curve curve=NULL; /* Internal use: no Input neither Output of module */

Point_curve newp,oldp=NULL;

int i;

curve = mw_change_curve(curve);

if (curve == NULL) mwerror(FATAL,1,"Not enough memory.\n");

...

(End of this example as for the mw_new_curve function).

Curve MegaWave2 System Library Curve 116

©Name

mw copy curve - Copy a curve into another one

©Summary

Curve mw copy curve(in,out)

Curve in, out;

©Description

This function duplicates the points contained in in. The result is put in out, which may not be a
predefined structure : in case of out=NULL, the out structure is allocated.

The function mw_copy_curve returns NULL if not enough memory is available to perform the copy, or out
elsewhere. Your code should check this return value to send an error message in the NULL case, and do
appropriate statement.

©Example

Curve in; /* Predefined curve */

Curve out=NULL;

out=mw_copy_curve(in,out);

if (!out) mwerror(FATAL,1,"Not enough memory.\n");

Curve MegaWave2 System Library Curve 117

©Name

mw delete curve - Deallocate a curve

©Summary

void mw delete curve(curve)

Curve curve;

©Description

This function deallocates all the memory allocated by the curve variable that is, all the points belonging
to this chain and the Curvestructure itself. You should set curve = NULL after this call since the address
pointed by curve is no longer valid.

©Example

/* Remove the first curve of an existing curve set (curves) */

Curves curves;/* Existing curve set (e.g. Input of module) */

Curve curve; /* Internal use */

curve = curves->first;

curves->first=curves->next;

curves->next->previous = NULL;

mw_delete_curve(curve);

curve = NULL;

Curve MegaWave2 System Library Curve 118

©Name

mw length curve - Return the number of points of a curve

©Summary

unsigned int mw length curve(cv);

Curve cv;

©Description

This function return the number of points contained in the given curve cv. It returns 0 if the structure
is empty.

©Example

Curve curve; /* Internal use: no Input neither Output of module */

Point_curve newp,oldp=NULL;

int i;

curve = mw_new_curve();

if (curve == NULL) mwerror(FATAL,1,"Not enough memory.\n");

/* Define a curve with 5 points */

for (i=1;i<=5;i++)

{

newp = mw_new_point_curve();

if (newp == NULL) mwerror(FATAL,1,"Not enough memory.\n");

if (i=0) curve->first = newp;

newp->x = newp->y = i;

newp->previous = oldp;

if (oldp) oldp->next = newp;

oldp=newp;

}

/* The length is 5 */

printf("Length=%d\n",mw_length_curve(curve));

Curve MegaWave2 System Library Curve 119

©Name

mw new curve - Create a new curve

©Summary

Curve mw new curve();

©Description

This function creates a new Curvestructure. It returns NULL if not enough memory is available to create
the structure. Your code should check this value to send an error message in the NULL case, and do
appropriate statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module, except if they are part of an input or
output chain.

©Example

/* Define a curve with 10 points which is the straight line (0,0)-(9,9) */

Curve curve; /* Internal use: no Input neither Output of module */

Point_curve newp,oldp=NULL;

int i;

curve = mw_new_curve();

if (curve == NULL) mwerror(FATAL,1,"Not enough memory.\n");

for (i=0;i<10;i++)

{

newp = mw_new_point_curve();

if (newp == NULL) mwerror(FATAL,1,"Not enough memory.\n");

if (i=0) curve->first = newp;

newp->x = newp->y = i;

newp->previous = oldp;

if (oldp) oldp->next = newp;

oldp=newp;

}

Curves MegaWave2 System Library Curves 120

6.3 Set of planar curves

The Curves memory type is used when you want to handle several curves into only one variable.

6.3.1 The structure Curves

This is the C definition of the structure:

typedef struct curves {

char cmt[mw_cmtsize]; /* Comments */

char name[mw_namesize]; /* Name of the set */

Curve first; /* Pointer to the first curve */

} *Curves;

If curves is of Curves memory type, then curves->first is of Curve memory type and it is the first curve
of the set; therefore, curves->first->first is the first point of the first curve. curves->first->next

is the second curve, etc. The end of the set occurs when the next field of a curve is NULL.

6.3.2 Related file (external) types

The list of the available formats is the following:

1. "MW2_CURVES" MegaWave2 binary format.

6.3.3 Functions Summary

The following is a description of all the functions related to the Curves type. The list is in alphabetical
order.

Curves MegaWave2 System Library Curves 121

©Name

mw change curves - Define the curves structure, if not defined

©Summary

Curves mw change curves(curves)

Curves curves;

©Description

This function returns a Curves structure if the input curves = NULL. It is provided despite the mw_new_curves
function for global coherence with other memory types.

The function mw_change_curves returns NULL if not enough memory is available to allocate the structure.
Your code should check this return value to send an error message in the NULL case, and do appropriate
statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal curves structures before the end of the module.

©Example

/* Define a curves set to be two pre-defined curves */

Curves curves=NULL; /* Internal use: no Input neither Output of module */

Curve curve1,curve2; /* Pre-defined curves (e.g. inputs of module) */

curves = mw_change_curves(curves);

if (curves == NULL) mwerror(FATAL,1,"Not enough memory.\n");

...

(End of this example as for the mw_new_curves function).

Curves MegaWave2 System Library Curves 122

©Name

mw delete curves - Deallocate a curves set

©Summary

void mw delete curves(curves)

Curves curves;

©Description

This function deallocates all the memory allocated by the curves variable that is, all the points be-
longing to all curves into this set, all Curvestructures and the Curvesstructure itself. You should set
curves = NULL after this call since the address pointed by curves is no longer valid.

©Example

Curves curves=NULL; /* Internal use: no Input neither Output of module */

curves = mw_new_curves();

if (curves == NULL) mwerror(FATAL,1,"Not enough memory.\n");

.

.

.

mw_delete_curves(curves);

Curves MegaWave2 System Library Curves 123

©Name

mw length curves - Return the number of curves into a curves structure

©Summary

unsigned int mw length curves(cvs);

Curves cvs;

©Description

This function returns the number of curves contained in the given cvs. It returns 0 if the structure is
empty.

©Example

/* Define a curves set to be two pre-defined curves */

Curves curves=NULL; /* Internal use: no Input neither Output of module */

Curve curve1,curve2; /* Pre-defined curves (e.g. inputs of module) */

curves = mw_new_curves();

if (curves == NULL) mwerror(FATAL,1,"Not enough memory.\n");

curves->first=curve1;

curve1->previous = curve2->next = NULL;

curve1->next = curve2;

curve2->previous = curve1;

/* The length would be 2 */

printf("Length=%d\n",mw_length_curves(curves));

Curves MegaWave2 System Library Curves 124

©Name

mw new curves - Create a new curves

©Summary

Curves mw new curves();

©Description

This function creates a new Curvesstructure. It returns NULL if not enough memory is available to create
the structure. Your code should check this value to send an error message in the NULL case, and do
appropriate statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module.

©Example

/* Define a curves set to be two pre-defined curves */

Curves curves=NULL; /* Internal use: no Input neither Output of module */

Curve curve1,curve2; /* Pre-defined curves (e.g. inputs of module) */

curves = mw_new_curves();

if (curves == NULL) mwerror(FATAL,1,"Not enough memory.\n");

curves->first=curve1;

curve1->previous = curve2->next = NULL;

curve1->next = curve2;

curve2->previous = curve1;

Curves MegaWave2 System Library Curves 125

©Name

mw npoints curves - Return the total number of points a curves structure contains

©Summary

unsigned int mw npoints curves(cvs);

Curves cvs;

©Description

This function returns the total number of points contained in the given cvs, that is the sum of mw_length_curve(cv)
for all curves cv contained in cvs. The function returns 0 if the structure is empty.

Polygon MegaWave2 System Library Polygon 126

6.4 Polygon, a variant of curve

You should use the Polygon memory type when you need to constitute a chain of (x, y) coordinates with
some global properties.

6.4.1 The structure Polygon

The first two fields of the structure register the global properties, assumed to be represented as an array
of channels; each channel is a real number. The meaning of each channel has to be defined by the user;
the number of channels can be selected using the function mw_alloc_polygon or mw_change_polygon

(see below).

The next fields of the structure are similar to those in the Curvememory type.

typedef struct polygon {

int nb_channels; /* Number of channels */

float *channel; /* Tab to the channel */

/* The number of elements is given by nb_channels */

Point_curve first; /* Pointer to the first point of the curve */

/* For use in Polygons only */

struct polygon *previous; /* Pointer to the previous poly. (may be NULL) */

struct polygon *next; /* Pointer to the next poly. (may be NULL) */

} *Polygon;

6.4.2 Related file (external) types

The list of the available formats is the following:

1. "A_POLY" MegaWave2 Data Ascii format with a def Polygon area. If a file of this format has
several def Polygon areas, only the first one is meaningful for the Polygon object. Since this
format uses Ascii coding, you may read or modify the file just by editing it using a text editor.

6.4.3 Functions Summary

The following is a description of all the functions related to the Polygon type. The list is in alphabetical
order.

Polygon MegaWave2 System Library Polygon 127

©Name

mw alloc polygon - Allocate the channels array

©Summary

Polygon mw alloc polygon(polygon,nc)

Polygon polygon;

int nc;

©Description

This function allocates the channels array of a Polygonstructure previously created using mw_new_polygon.
The size of the array is given by nc, it is the number of different channels. A channel corresponds to a
real parameter associated to the polygon. The meaning of such channel has to be defined by the user.
For example, polygon->channel[0] may be the gray level of the polygon.

Do not use this function if polygon has already an allocated channels array: use the function mw_change_polygon

instead.

The function mw_alloc_polygon returns NULL if not enough memory is available to allocate the structure
or the channels array. Your code should check this return value to send an error message in the NULL

case, and do appropriate statement.

©Example
See the example of the function mw_new_polygon.

Polygon MegaWave2 System Library Polygon 128

©Name

mw change polygon - Change the number of channels

©Summary

Polygon mw change polygon(polygon,nc)

Polygon polygon;

int nc;

©Description

This function changes the memory allocation for the channels array of a Polygonstructure, even if no
previously memory allocation was done.

The number of channels is given by nc; a channel corresponds to a real parameter associated to the
polygon. The meaning of such channel has to be defined by the user. For example, polygon->channel[0]
may be the gray level of the polygon.

This function can also create the structure if the input polygon = NULL. Therefore, this function can
replace both mw_new_polygon and mw_alloc_polygon. It is the recommended function to set the number
of channels for polygons which are input/output of a module. Since the function can set the address of
polygon, the variable must be set to the return value of the function (See example below).

The function mw_change_polygon returns NULL if not enough memory is available to allocate the structure
or the channels array. Your code should check this return value to send an error message in the NULL

case, and do appropriate statement.

©Example

Polygon polygon; /* Input of module */

polygon = mw_change_polygon(polygon,1);

if (polygon == NULL) mwerror(FATAL,1,"Not enough memory.\n");

polygon->channel[0] = 255.0;

...

(End of this example as for the mw_new_polygon function).

Polygon MegaWave2 System Library Polygon 129

©Name

mw delete polygon - Deallocate a polygon

©Summary

void mw delete polygon(polygon)

Polygon polygon;

©Description

This function deallocates all the memory allocated by the polygon variable that is, all the points be-
longing to this chain, the channels array (if needed) and the Polygonstructure itself. You should set
polygon = NULL after this call since the address pointed by polygon is no longer valid.

©Example

/* Remove the first polygon of an existing polygon set (polygons) */

Polygons polygons;/* Existing polygons set (e.g. Input of module) */

Polygon polygon; /* Internal use */

polygon = polygons->first;

polygons->first=polygons->next;

polygons->next->previous = NULL;

mw_delete_polygon(polygon);

polygon = NULL;

Polygon MegaWave2 System Library Polygon 130

©Name

mw length polygon - Return the number of points of a polygon

©Summary

unsigned int mw length polygon(poly);

Polygon poly;

©Description

This function return the number of points contained in the given polygon poly. It returns 0 if the
structure is empty.

©Example

Polygon polygon; /* Internal use: no Input neither Output of module */

point_curve newp,oldp=NULL;

int i;

polygon = mw_new_polygon();

if (polygon == NULL) mwerror(FATAL,1,"Not enough memory.\n");

/* Define a polygon with 5 points */

for (i=1;i<=5;i++)

{

newp = mw_new_point_curve();

if (newp == NULL) mwerror(FATAL,1,"Not enough memory.\n");

if (i=0) polygon->first = newp;

newp->x = newp->y = i;

newp->previous = oldp;

if (oldp) oldp->next = newp;

oldp=newp;

}

/* The length is 5 */

printf("Length=%d\n",mw_length_polygon(polygon));

Polygon MegaWave2 System Library Polygon 131

©Name

mw new polygon - Create a new polygon

©Summary

Polygon mw new polygon();

©Description

This function creates a new Polygonstructure with an empty channels array. It returns NULL if not
enough memory is available to create the structure. Your code should check this value to send an error
message in the NULL case, and do appropriate statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module, except if they are part of an input or
output polygons set.

©Example

/* Define a polygon with 10 points which is the straight line (0,0)-(9,9) */

Polygon polygon; /* Internal use: no Input neither Output of module */

Point_curve newp,oldp=NULL;

int i;

polygon = mw_new_polygon();

if ((polygon == NULL) || (mw_alloc_polygon(polygon,1) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

polygon->channel[0] = 255.0;

for (i=0;i<10;i++)

{

newp = mw_new_point_curve();

if (newp == NULL) mwerror(FATAL,1,"Not enough memory.\n");

if (i=0) polygon->first = newp;

newp->x = newp->y = i;

newp->previous = oldp;

if (oldp) oldp->next = newp;

oldp=newp;

}

Polygons MegaWave2 System Library Polygons 132

6.5 Set of polygons

The Polygons memory type is used when you want to handle several polygons into only one variable.

6.5.1 The structure Polygons

This is the C definition of the structure:

typedef struct polygons {

char cmt[mw_cmtsize]; /* Comments */

char name[mw_namesize]; /* Name of the set */

Polygon first; /* Pointer to the first polygon */

} *Polygons;

If polygons is of Polygons memory type, then polygons->first is of Polygon memory type and it is
the first polygon of the set; therefore, polygons->first->first is the first point of the first polygon.
polygons->first->next is the second polygon, etc. The end of the set occurs when the next field of a
polygon is NULL.

6.5.2 Related file (external) types

The list of the available formats is the following:

1. "A_POLY" MegaWave2 Data Ascii format with as many def Polygon areas as the number of poly-
gons recorded. Since this format uses Ascii coding, you may read or modify the file just by editing
it using a text editor.

6.5.3 Functions Summary

The following is a description of all the functions related to the Polygons type. The list is in alphabetical
order.

Polygons MegaWave2 System Library Polygons 133

©Name

mw change polygons - Define the polygons structure, if not defined

©Summary

Polygons mw change polygons(polygons)

Polygons polygons;

©Description

This function returns a Polygons structure if the input polygons = NULL. It is provided despite the
mw_new_polygons function for global coherence with other memory types.

The function mw_change_polygons returns NULL if not enough memory is available to allocate the struc-
ture. Your code should check this return value to send an error message in the NULL case, and do
appropriate statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal polygons structures before the end of the module.

©Example

/* Define a polygons set to be two pre-defined polygons */

Polygons polygons=NULL; /* Internal use: no Input neither Output of module */

Polygon polygon1,polygon2; /* Pre-defined polygons (e.g. inputs of module) */

polygons = mw_change_polygons(polygons);

if (polygons == NULL) mwerror(FATAL,1,"Not enough memory.\n");

...

(End of this example as for the mw_new_polygons function).

Polygons MegaWave2 System Library Polygons 134

©Name

mw delete polygons - Deallocate a polygons set

©Summary

void mw delete polygons(polygons)

Polygons polygons;

©Description

This function deallocates all the memory allocated by the polygons variable that is, all the points
belonging to all polygons into this set, all channels arrays (if any), all Polygonstructures and the
Polygonsstructure itself. You should set polygons = NULL after this call since the address pointed
by polygons is no longer valid.

©Example

Polygons polygons=NULL; /* Internal use: no Input neither Output of module */

polygons = mw_new_polygons();

if (polygons == NULL) mwerror(FATAL,1,"Not enough memory.\n");

.

.

.

mw_delete_polygons(polygons);

Polygons MegaWave2 System Library Polygons 135

©Name

mw length polygons - Return the number of polygons into a polygons structure

©Summary

unsigned int mw length polygons(polys);

Polygons polys;

©Description

This function returns the number of polygons contained in the given polys. It returns 0 if the structure
is empty.

©Example

/* Define a polygons set to be two pre-defined polygons */

Polygons polygons=NULL; /* Internal use: no Input neither Output of module */

Polygon polygon1,polygon2; /* Pre-defined polygons (e.g. inputs of module) */

polygons = mw_new_polygons();

if (polygons == NULL) mwerror(FATAL,1,"Not enough memory.\n");

polygons->first=polygon1;

polygon1->previous = polygon2->next = NULL;

polygon1->next = polygon2;

polygon2->previous = polygon1;

/* The length would be 2 */

printf("Length=%d\n",mw_length_polygons(polygons));

Polygons MegaWave2 System Library Polygons 136

©Name

mw new polygons - Create a new polygons

©Summary

Polygons mw new polygons();

©Description

This function creates a new Polygonsstructure. It returns NULL if not enough memory is available to
create the structure. Your code should check this value to send an error message in the NULL case, and
do appropriate statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module.

©Example

/* Define a polygons set to be two pre-defined polygons */

Polygons polygons=NULL; /* Internal use: no Input neither Output of module */

Polygon polygon1,polygon2; /* Pre-defined polygons (e.g. inputs of module) */

polygons = mw_new_polygons();

if (polygons == NULL) mwerror(FATAL,1,"Not enough memory.\n");

polygons->first=polygon1;

polygon1->previous = polygon2->next = NULL;

polygon1->next = polygon2;

polygon2->previous = polygon1;

Fcurve(s)/Fpolygon(s) MegaWave2 System Library Fcurve(s)/Fpolygon(s) 137

6.6 Points, Curves and Polygons with real coordinates

Until now, all of the objects we have described in the section 6 record the coordinates as integers. Use
the following objects if you need coordinates of floating point values: Point fcurve, Fcurve, Fcurves,
Fpolygon, Fpolygons. If you need higher precision, use the following objects (coordinates are recorded
as double): Point dcurve, Dcurve, Dcurves.

We will not give the full description of these objects and of their related functions since it is equivalent
to the former description, just keep in mind to translate the words curve to fcurve or dcurve and polygon
to fpolygon, both in the type names (the first letter being upper-case) and in the function names.

And, of course, do not forget that the coordinates are now real. The C definition of the structure
Point fcurve is the following:

typedef struct point_fcurve {

float x,y; /* Coordinates of the point */

/* For use in Fcurve only */

struct point_fcurve *previous; /*Pointer to the previous point (may be NULL)*/

struct point_fcurve *next; /* Pointer to the next point (may be NULL) */

} *Point_fcurve;

The C definition of the structure Point dcurve is the following:

typedef struct point_dcurve {

double x,y; /* Coordinates of the point */

/* For use in Dcurve only */

struct point_dcurve *previous; /*Pointer to the previous point (may be NULL)*/

struct point_dcurve *next; /* Pointer to the next point (may be NULL) */

} *Point_dcurve;

6.7 Lists of n-tuple reals

Some algorithms dealing with curves can be made more efficient if image coordinates are not recorded
as a chain of points (x, y), but as part of an array. In such case, use one of the Flist, Flists, Dlist,
Dlists objects above. These types can more generally be used to handle any list of n-tuple reals, the
case of points in the plane corresponding to n = 2. As for curves, Dlist and Dlists are the counterpart
of Flist and Flists : the only difference between them is that values are of type double instead of float.

6.7.1 The structure Flist

In a variable of Flist memory type, data such as coordinates are recorded in the array named values.
We call dimension (field named dim) the number of components per elements the array is composed, while
the field named size gives the number of elements. When a Flist is used as a Fcurve, the dimension is
2 (number of coordinates in the plane) and the size is the number of points.

The field data can be used to record any additional information (when no information is available, it is
set to NULL). The size of the space pointed by data is set in data_size.

typedef struct flist {

Lists MegaWave2 System Library Lists 138

int size; /* size (number of elements) */

int max_size; /* currently allocated size (maximum number of elements) */

int dim; /* dimension (number of components per element) */

float *values; /* values = size * dim array

nth element = values[n*dim+i], i=0..dim-1 */

int data_size; /* size of data[] in bytes */

void* data; /* User defined field (saved). A pointer to something */

} *Flist;

6.7.2 Related file (external) types

The list of the available native formats is the following:

1. "MW2_FLIST" MegaWave2 binary format.

6.7.3 Functions Summary

The following is a description of all the functions related to the Flist type. The list is in alphabetical
order. Notice that these functions do not manage the data field.

Lists MegaWave2 System Library Lists 139

©Name

mw change flist - Define and allocate a Flist structure

©Summary

Flist mw change flist(l,max size,size,dim)

Flist l; int max size,size,dim;

©Description

This function changes the memory allocation of the values array of a Flist structure, even if no previ-
ously memory allocation was done. The new size (number of elements) of the structure is given by size,
the size to allocate (maximal number of elements) by max_size, and the dimension by dim.

It can also create the structure if the input l = NULL. Therefore, this function can replace both mw_new_flist

and mw_realloc_flist. Since the function can set the address of l, the variable must be set to the return
value of the function (See example below).

The function mw_change_flist returns NULL if not enough memory is available to allocate the structure
or the values array, and an error message is issued. Your code should check this return value to eventually
send a fatal error message in the NULL case, and do appropriate statement.

©Example

Flist l;

/*

Allocate l to handle at most 10 samples of couples (2) of

floating point values, the default number of samples being 0.

*/

l = mw_change_flist(NULL,10,0,2);

if (!l) mwerror(FATAL,1,"Not enough memory to continue !\n");

Lists MegaWave2 System Library Lists 140

©Name

mw clear flist - Clear the array of a Flist structure

©Summary

void mw clear flist(l,v)

Flist l; float v;

©Description

This function clears the values array by filling it with the value v (up to the current number of samples).

©Example

Flist l;

/*

Allocate l to handle at most 10 samples of couples (2) of

floating point values, the default number of samples being 5.

*/

l = mw_change_flist(NULL,10,5,2);

if (!l) mwerror(FATAL,1,"Not enough memory to continue !\n");

/*

Clear the 5 current samples with 0.

*/

mw_clear_flist(l,0.0);

Lists MegaWave2 System Library Lists 141

©Name

mw copy flist - Copy a the array Flist structure

©Summary

Flist mw copy flist(in,out)

Flist in,out;

©Description

This function copies the values array and data field of the Flist structure in into out. The duplicated
Flist out is allocated to at least the current size of in.

Since the function can set the address of out, the variable must be set to the return value of the function
(See example below).

The function mw_copy_flist returns NULL if not enough memory is available to allocate the structure or
the values array, and an error message is issued. Your code should check this return value to eventually
send a fatal error message in the NULL case, and do appropriate statement.

©Example

Flist in,out=NULL;

/*

Allocate in to handle at most 10 samples of couples (2) of

floating point values, the current number of samples being 5.

*/

in = mw_change_flist(NULL,10,5,2);

if (!in) mwerror(FATAL,1,"Not enough memory to continue !\n");

/*

Clear the 5 current samples with 1.

*/

mw_clear_flist(in,1.0);

/*

Copy in into out. Allocated size for out is 5 samples.

*/

out=mw_copy_flist(in,out);

if (!out) mwerror(FATAL,1,"Not enough memory to copy flist !\n");

Lists MegaWave2 System Library Lists 142

©Name

mw delete flist - Delete the array and the Flist structure

©Summary

void mw delete flist(l)

Flist l;

©Description

This function deletes the values array and the structure itself. Warning : the memory of the user-defined
field data is not freed. If this field has been allocated, you should free it before calling mw_delete_flist.

©Example

Flist l;

/*

Allocate l to handle at most 10 samples of couples (2) of

floating point values, the default number of samples being 5.

*/

l = mw_change_flist(NULL,10,5,2);

if (!l) mwerror(FATAL,1,"Not enough memory to continue !\n");

/*

Allocate the data field for 20 integers.

*/

l->data_size=20*sizeof(int);

l->data= (int *)malloc(l->data_size);

if (!l->data) mwerror(FATAL,1,"Not enough memory to continue !\n");

/*

... (statement)...

*/

/*

Free the list, including data field.

*/

free(l->data);

mw_delete_flist(l);

Lists MegaWave2 System Library Lists 143

©Name

mw enlarge flist - Enlarge the array of a Flist

©Summary

Flist mw enlarge flist(l)

Flist l;

©Description

This function performs a memory reallocation on the array l->values to increase the number of elements
that can be recorded. The enlargement factor is fixed by the constant MW_LIST_ENLARGE_FACTOR defined
in the include file list.h. This function is useful when one does not know by advance the size of the list,
and when one wish to avoid multiple reallocations.

If not enough memory is available to perform the reallocation, an error message is issued and the function
returns NULL. Otherwise, the function returns l.

©Example

/* Fill a flist with diagonal points using mw_enlarge_flist

up to a random size, unknown by advance.

*/

Flist l;

l = mw_change_flist(NULL,2,0,2);

if (l==NULL) mwerror(FATAL,1,"Not enough memory to continue !\n");

i=0;

do

{

if ((2*i == l->max_size) && (!mw_enlarge_flist(l)))

mwerror(FATAL,1,"Not enough memory to continue !\n");

l->values[i++] = l->values[i++] = i;

} while (rand() != 0);

l->size=(i+1)/2;

Lists MegaWave2 System Library Lists 144

©Name

mw new flist - Create a Flist structure

©Summary

Flist mw new flist()

©Description

This function creates a new Flist structure. The fields are initialized to 0 or NULLvalue. The function
returns the address of the new structure, or NULL if not enough memory is available.

©Example

Flist l;

/*

Define the structure

*/

l = mw_new_flist();

if (!l) mwerror(FATAL,1,"Not enough memory to define the list !\n");

/*

At that time, the FList is empty.

*/

Lists MegaWave2 System Library Lists 145

©Name

mw realloc flist - Realloc the array of a Flist

©Summary

Flist mw realloc flist(l,n)

Flist l;

int n;

©Description

This function performs a memory reallocation on the array l->values so that at most n elements can
be recorded.

If not enough memory is available to perform the reallocation, an error message is issued and the function
returns NULL. Otherwise, the function returns l.

©Example

Flist l;

/*

Allocate l to handle at most 1000 samples of 500-tuple of

floating point values, the default number of samples being 1000.

*/

l = mw_change_flist(NULL,1000,1000,500);

if (!l) mwerror(FATAL,1,"Not enough memory to continue !\n");

/*

... (statement)...

*/

/*

Now we need space for 20 samples only : by doing reallocation,

we allow to free some memory.

*/

l = mw_realloc_flist(l,20);

if (!l) mwerror(FATAL,1,"Couldn’t realloc flist !\n");

Lists MegaWave2 System Library Lists 146

6.7.4 The structure Flists

A Flists structure is an array of Flist not necessary of the same size. As for the Flist structure, the
Flists structure contains a data field that can be used to record any additional information (when no
information is available, it is set to NULL). The size of the space pointed by data is set in data_size.

typedef struct flists {

char cmt[mw_cmtsize]; /* Comments */

char name[mw_namesize]; /* Name */

int size; /* size (number of lists) */

int max_size; /* currently allocated size (maximum number of lists) */

Flist *list; /* array of Flist */

int data_size; /* size of data[] in bytes */

void* data; /* User defined field (saved). A pointer to something */

} *Flists;

6.7.5 Related file (external) types

The list of the available native formats is the following:

1. "MW2_FLISTS" MegaWave2 binary format.

6.7.6 Functions Summary

The following is a description of all the functions related to the Flists type. The list is in alphabetical
order. Notice that these functions do not manage the data field.

Lists MegaWave2 System Library Lists 147

©Name

mw change flists - Define and allocate a Flists structure

©Summary

Flists mw change flists(ls,max size,size)

Flist ls;

int max size,size;

©Description

This function changes the memory allocation of the list array of a Flists structure, even if no previously
memory allocation was done. The new size (number of lists) of the structure is given by size, and the
size to allocate (maximal number of lists) by max_size.

It can also create the structure if the input ls = NULL. Therefore, this function can replace both
mw_new_flists and mw_realloc_flists. Since the function can set the address of ls, the variable
must be set to the return value of the function (See example below).

The function mw_change_flists returns NULL if not enough memory is available to allocate the structure
or the list array, and an error message is issued. Your code should check this return value to eventually
send a fatal error message in the NULL case, and do appropriate statement.

©Example

Flists ls;

/*

Allocate ls to handle at most 10 lists, the current number of

lists being 0 (no list).

*/

ls = mw_change_flists(NULL,10,0);

if (!ls) mwerror(FATAL,1,"Not enough memory to continue !\n");

Lists MegaWave2 System Library Lists 148

©Name

mw copy flists - Copy the lists contained in a Flists structure

©Summary

Flists mw copy flists(in,out)

Flists in,out;

©Description

This function copies the list array and data field of the Flists structure in into out : each list contained
in in are duplicated. The duplicated Flists out is allocated to at least the current size of in.

Since the function can set the address of out, the variable must be set to the return value of the function
(See example below).

The function mw_copy_flists returns NULL if not enough memory is available to allocate the structure
or the list array, and an error message is issued. Your code should check this return value to eventually
send a fatal error message in the NULL case, and do appropriate statement.

©Example

Flists in,out=NULL;

/*

Allocate ls to handle at most 10 lists, the current number of

lists being 3.

*/

ls = mw_change_flists(NULL,10,3);

if (!ls) mwerror(FATAL,1,"Not enough memory to continue !\n");

/* ... (Here fill the lists) ... */

/*

Copy in into out. Allocated size for out is 3 lists.

*/

out=mw_copy_flists(in,out);

if (!out) mwerror(FATAL,1,"Not enough memory to copy the lists !\n");

Lists MegaWave2 System Library Lists 149

©Name

mw delete flists - Delete the lists and the Flists structure

©Summary

void mw delete flists(ls)

Flist ls;

©Description

This function deletes the lists contained in the list array, and the structure Flists itself. Warning :
the memory of the user-defined field data is not freed. If this field has been allocated, you should free it
before calling mw_delete_flists.

©Example

Flist ls;

int i;

/*

... (Assume ls has been previoulsy allocated)...

*/

/*

Free the lists, including data field.

*/

for (i=ls->size;i--;) if (ls->list[i]->data) free(ls->list[i]->data);

if (ls->data) free(ls->data);

mw_delete_flists(ls);

Lists MegaWave2 System Library Lists 150

©Name

mw enlarge flists - Enlarge the number of lists a Flists may contain

©Summary

Flists mw enlarge flist(ls)

Flist ls;

©Description

This function performs a memory reallocation on the array ls->list to increase the number of lists that
can be recorded. The enlargement factor is fixed by the constant MW_LIST_ENLARGE_FACTOR defined in
the include file list.h. This function is useful when one does not know by advance the number of lists,
and when one wish to avoid multiple reallocations.

If not enough memory is available to perform the reallocation, an error message is issued and the function
returns NULL. Otherwise, the function returns ls.

©Example

/* Fill a flists with lists until the user enters ’Q’.

*/

Flist ls;

Flist l;

char c;

ls = mw_change_flists(NULL,10,0);

if (ls==NULL) mwerror(FATAL,1,"Not enough memory to continue !\n");

do {

if (ls->size == ls->max_size)

if (mw_enlarge_flists(ls)==NULL)

mwerror(FATAL,1,"Not enough memory to continue !\n");

l = mw_change_flist(NULL,10,10,2);

if (l==NULL) mwerror(FATAL,1,"Not enough memory to continue !\n");

mw_clear_flist(l,1.0)

ls->list[ls->size++] = l;

scanf("%c",&c);

} while (c!=’Q’);

Lists MegaWave2 System Library Lists 151

©Name

mw new flists - Create a Flists structure

©Summary

Flists mw new flists()

©Description

This function creates a new Flists structure. The fields are initialized to 0 or NULLvalue. The function
returns the address of the new structure, or NULL if not enough memory is available.

©Example

Flists ls;

/*

Define the structure

*/

ls = mw_new_flists();

if (!ls) mwerror(FATAL,1,"Not enough memory to define the lists !\n");

/*

At that time, the FLists is empty (no lists).

*/

Lists MegaWave2 System Library Lists 152

©Name

mw realloc flists - Realloc the list array of the Flists

©Summary

Flists mw realloc flists(ls,n)

Flists ls;

int n;

©Description

This function performs a memory reallocation on the array ls->list so that at most n lists can be
recorded.

If not enough memory is available to perform the reallocation, an error message is issued and the function
returns NULL. Otherwise, the function returns ls.

©Example

Flists ls;

/*

Allocate ls to handle 10 lists.

*/

ls = mw_new_flists();

if (!ls) mwerror(FATAL,1,"Not enough memory to continue !\n");

ls = mw_realloc_flists(ls,10);

if (!ls) mwerror(FATAL,1,"Not enough memory to continue !\n");

Lists MegaWave2 System Library Lists 153

6.7.7 The structures Dlist and Dlists

As for curves, Dlist and Dlists are the counterpart of Flist and Flists : the only difference between
them is that values are of type double instead of float. Since you can easily imagine how it works, we
will not document the functions associated to Dlist and Dlists. Just change the letter f to d.

typedef struct dlist {

int size; /* size (number of elements) */

int max_size; /* currently allocated size (number of ELEMENTS) */

int dim; /* dimension (number of components per element) */

double *values; /* values = size * dim array

nth element = values[n*dim+i], i=0..dim-1 */

int data_size; /* size of data[] in bytes */

void* data; /* User defined field (saved). A pointer to something */

} *Dlist;

typedef struct dlists {

char cmt[mw_cmtsize]; /* Comments */

char name[mw_namesize]; /* Name */

int size; /* size (number of elements) */

int max_size; /* currently allocated size (number of ELEMENTS) */

Dlist *list; /* array of Dlist */

int data_size; /* size of data[] in bytes */

void* data; /* User defined field (saved). A pointer to something */

} *Dlists;

6.7.8 Related file (external) types

Here is the list of available native formats associated to Dlist internal type :

1. "MW2_DLIST" MegaWave2 binary format.

The list of available native formats associated to Dlists internal type is

1. "MW2_DLISTS" MegaWave2 binary format.

Morphological structures MegaWave2 System Library Morphological structures 154

7 Level sets and morphological structures

This section describes the various morphological structures used to represent images. We call morpholog-
ical representation any complete decomposition which is invariant by (local or global) contrast changes.
More precisely, if R is the representation operator and c a contrast change function (that is, any non-
decreasing real function), the contrast change invariance corresponds to the property R(c(u)) = c(R(u))
for every image u. Exemples of such representations are based by level sets, level lines and connected
components of level sets.

We begin our description with the Shape and Shapes structures. These are not the first developed in
MegaWave2, but they are going to play an increasing role : they allow to handle level sets and connected
components of level sets in a tree structure very useful to develop morphological shape-based applications.
In addition, computation of these structures can be performed in a way faster than the traditional level
set decomposition, using the Fast Level Set Transform (FLST in short). The FLST has been created by
Pascal Monasse during its PhD thesis. The following description of the Shape and Shapes structures has
been written with his help.

7.1 Shape

A Shape is a set of pixels based on a level set of an image. It can be a level set itself, one of its connected
component, or a shape as defined by the FLST (see module flst) that is, in short, a connected component
of a level set with filled holes. Notice that a Shape has no reference to the image in which it is extracted,
so a Shape can be constructed from scratch, without an initial image.

The basic fields are:

• inferior_type: a nonzero value indicates that the Shape corresponds to a lower level set of level
λ ({x : u(x) ≤ λ}1 or {x : u(x) < λ}, those sets being noted in short by [u ≤ λ] and [u < λ]), while
a zero value indicates an upper level set ([u ≥ λ] or [u > λ]).

• value: the gray level λ of the level set.

• area: the area, i.e., the number of pixels of the shape.

• pixels: an array of pixel coordinates containing area elements.

• boundary: a Flist of dimension two containing the vertices of a polygonal representation of the
boundary.

• open: a nonzero value indicates that the Shape meets the border of the image. The name of this
field comes from the fact that if the boundary is a curve, it is an open curve.

Moreover, there is an additional field removed indicating if the shape is to be taken into account. This
field is interesting only in the case where the shape is part of a structure.

A shape is supposed to be included in a tree structure driven by inclusion. This is the case for example
when the shapes are all lower (or all upper) level sets: in this case the tree has no ramification, since the
level sets are monotone for inclusion. There is a true tree structure when they are connected components
of lower (or upper) level sets. This is also true for the shapes in the sense of the FLST.

In the vocabulary of graphs, the edges of the tree adjacent to the shape are stored in the fields parent,
child and next_sibling. The child field corresponds actually to the first child of the shape. The other
ones can be recovered by following the pointers next_sibling. For example, to call the function foo

successively with the children of shape s as argument, we would write the following code snippet:

1we denote by x a point in the image u.

Shape MegaWave2 System Library Shape 155

for(c = s->child; c != NULL; c=c->next_sibling) foo(c);

The parent contains the shape while the shape contains its children. Functions for accessing these three
fields are given: they take into account that some shapes may be ignored, as indicated by the field
removed.

It is dangerous to remove the root of the tree by setting its removed field: many functions rely on the
fact that we have a root.

7.1.1 The structure Shape

The meaning of the different fields is explained above. There are two additional fields, data and
data_size, whose content is left to the choice of the user. data is supposed to point to a memory
extent of (at least) data_size bytes, if this value is positive. Failure in this assumption may lead to a
memory corruption in I/O operations.

typedef struct shape

{

char inferior_type; /* Indicates if it is extracted from a superior

or inferior level set */

float value; /* Limiting gray-level of the level set */

char open; /* Indicates if the shape meets the border of the image */

int area; /* Area of the shape = area of the cc of level set

+ areas of the holes */

char removed; /* Indicates whether the shape exists or not */

Point_plane pixels; /* The array of pixels contained in the shape */

Flist boundary; /* The boundary curve defining the shape */

/* Data to include it in a tree. It has a parent (the smallest containing

shape), children (the largest contained shapes, whose first is pChild

and the others are its siblings), and siblings (the other children of

its parent) */

struct shape *parent, *next_sibling, *child;

int data_size; /* size of data[] in bytes */

void* data; /* User defined field (saved). A pointer to something */

} *Shape;

7.1.2 Related file (external) types

1. "MW2_SHAPE" MegaWave2 binary format.

7.1.3 Functions Summary

The following is a description of all the functions related to the Shape type. The list is in alphabetical
order.

Shape MegaWave2 System Library Shape 156

©Name

mw change shape - Create a Shape structure if necessary

©Summary

Shape mw change shape(sh)

Shape sh;

©Description

This function creates a Shape structure if sh is not already defined. The fields are initialized to 0 or
NULLvalue. The function returns the address of the structure, or NULL if not enough memory is available.

©Example

Shape sh=NULL;

/*

Define the structure

*/

sh = mw_change_shape(sh);

if (!sh) mwerror(FATAL,1,"Not enough memory to define the shape !\n");

/*

At that time, the shape is empty.

*/

Shape MegaWave2 System Library Shape 157

©Name

mw delete shape - Free the memory allocated for a Shape structure

©Summary

void mw delete shape(sh)

Shape sh;

©Description

This function deletes the pixels array, the boundary Flist, the data array (if needed), and the structure
itself.

©Example

Shape sh;

/*

Define the structure

*/

sh = mw_new_shape();

if (!sh) mwerror(FATAL,1,"Not enough memory to define the shape !\n");

/*

...(computation of the shape)...

*/

/*

Free the shape, including data field.

*/

mw_delete_shape(sh);

Shape MegaWave2 System Library Shape 158

©Name

mw get first child shape - Return the first child of a shape in the tree

©Summary

Shape mw get first child shape(sh)

Shape sh;

©Description

This function returns the first child of the shape sh, skipping removed shapes (field removed). This is
equivalent to sh->child if this shape is not removed.

Shape MegaWave2 System Library Shape 159

©Name

mw get next sibling shape - Return the next sibling of a shape in the tree

©Summary

Shape mw get next sibling shape(sh)

Shape sh;

©Description

This function returns the next sibling (shape sharing the same parent) of the shape sh, skipping removed
shapes (field removed). This is equivalent to sh->next_sibling if this shape is not removed.

Shape MegaWave2 System Library Shape 160

©Name

mw get not removed shape - Return the first shape not removed in subtree

©Summary

Shape mw get not removed shape(sh)

Shape sh;

©Description

This function returns sh if this shape is not removed (field removed), else it is equivalent to mw_get_first_child(sh)
that is, it returns the first child, skipping removed shapes.

Shape MegaWave2 System Library Shape 161

©Name

mw get parent shape - Return the parent of the shape in the tree

©Summary

Shape mw get parent shape(sh)

Shape sh;

©Description

This function returns the parent of the shape sh, skipping removed shapes (field removed). This is
equivalent to sh->parent if this shape is not removed.

Shape MegaWave2 System Library Shape 162

©Name

mw get smallest shape - Return the smallest shape containing a given pixel

©Summary

Shape mw get smallest shape(shs,x,y)

Shapes shs; int x,y;

©Description

This function returns the smallest shape containing the pixel at position (x, y), ignoring removed shapes
(field removed). This is equivalent to shs->smallest_shape[y*shs->ncol+x] provided this shape is not
removed.

Shape MegaWave2 System Library Shape 163

©Name

mw new shape - Create a Shape structure

©Summary

Shape mw new shape()

©Description

This function creates a new Shape structure. The fields are initialized to 0 or NULLvalue. The function
returns the address of the new structure, or NULL if not enough memory is available.

©Example

Shape sh;

/*

Define the structure

*/

sh = mw_new_shape();

if (!sh) mwerror(FATAL,1,"Not enough memory to define the shape !\n");

/*

At that time, the shape is empty.

*/

Shapes MegaWave2 System Library Shapes 164

7.2 Shapes

A Shapes structure is a collection of shapes extracted from an image. The fields nrow and ncol are the
dimensions of the image. The field interpolation is the convention used to extract level lines. Currently,
the valid values are 0 (module flst) and 1 (module flst_bilinear).

The elements are stored consecutively in the array the_shapes of size nb_shapes. By convention, the
shape at index 0 is the root of the tree.

The field smallest_shape is an array of size nrow×ncol giving for each pixel the smallest shape in the
tree that contains it. By going upward in the tree, it is possible to know all the shapes containing a given
pixel.

7.2.1 The structure Shapes

The meaning of the fields is explained above. The fields data_size and data are left to the user.

typedef struct shapes

{

char cmt[mw_cmtsize]; /* Comments */

char name[mw_namesize]; /* Name of the set */

int nrow; /* Number of rows (dy) of the image */

int ncol; /* Number of columns (dx) of the image */

int interpolation; /* Interpolation used for the level lines:

0=nearest neighbor, 1=bilinear */

Shape the_shapes; /* Array of the shapes.

The root of the tree is at index 0 */

int nb_shapes; /* The number of shapes (the size of the array the_shapes) */

/* Link between pixels and shapes */

Shape *smallest_shape; /* An image giving for each pixel

the smallest shape containing it */

int data_size; /* size of data[] in bytes */

void* data; /* User defined field (saved). A pointer to something */

} *Shapes;

7.2.2 Related file (external) types

1. "MW2_SHAPES" MegaWave2 binary format.

7.2.3 Functions Summary

The following is a description of all the functions related to the Shapes type. The list is in alphabetical
order.

Shapes MegaWave2 System Library Shapes 165

©Name

mw alloc shapes - Allocate the fields of a Shapes structure

©Summary

Shapes mw alloc shapes(shs, nrow, ncol, value)

Shapes shs;

int nrow, ncol;

float value; /* gray level value of the root */

©Description

This function takes as argument a Shapes structure and returns it after having allocated all necessary
fields. The input nrow and ncol are the dimensions of the image. The field the_shapes is allocated
to contain nrow×ncol+1 shapes, which is the maximal number of shapes extracted by the FLST (see
module flst). In fact, only one shape is put, the root of the tree, supposed to be extracted at gray level
value. The field smallest_shape is also allocated and initialized, each pixel having as smallest shape
the root.

The function returns shs, or NULL if not enough memory is available to do the allocation.

©Example

Shapes shs;

Fimage image; /* Assume image is allocated */

/*

Define the structure

*/

shs = mw_new_shapes();

if (!shs) mwerror(FATAL,1,"Not enough memory to define the shapes !\n");

/*

At that time, the structure exists but fields are empty : alloc them

to handle the Fimage image.

*/

if (!mw_alloc_shapes(shs, image->nrow, image->ncol, image->gray[0]))

mwerror(FATAL,1,"Not enough memory to alloc the shapes !\n");

Shapes MegaWave2 System Library Shapes 166

©Name

mw change shapes - (Re)alloc the fields of a Shapes structure

©Summary

Shapes mw change shapes(shs, nrow, ncol, value)

Shapes shs;

int nrow, ncol;

float value; /* gray level value of the root */

©Description

If the input pointer shs is NULL, create a new structure, otherwise delete the currently allocated fields (if
any) and call mw_alloc_shapes().

The function returns the new structure or shs, or NULL if not enough memory is available to do the
allocation.

©Example

Shapes shs=NULL;

Fimage image; /* Assume image is allocated */

/*

Define the structure and alloc the field to handle the Fimage image.

*/

shs = mw_change_shapes(shs, image->nrow, image->ncol, image->gray[0]);

if (!shs) mwerror(FATAL,1,"Not enough memory to alloc the shapes !\n");

Shapes MegaWave2 System Library Shapes 167

©Name

mw delete shapes - Delete a Shapes structure

©Summary

void mw delete shapes(shs)

Shapes shs;

©Description

This function frees the allocated fields and the structure itself. After this call, the memory pointed to by
shs must not be accessed any longer. Warning : in the contrary to mw_delete_shape(), the memory of
the user-defined field data is not freed. If this field has been allocated, you should free it before calling
mw_delete_shapes().

©Example

Shapes shs=NULL;

Fimage image; /* Assume image is allocated */

/*

Define the structure and alloc the field to handle the Fimage image.

*/

shs = mw_change_shapes(shs, image->nrow, image->ncol, image->gray[0]);

if (!shs) mwerror(FATAL,1,"Not enough memory to alloc the shapes !\n");

/*

... (do the computation) ...

*/

/*

Delete the shapes

*/

if (!shs->data) free(shs->data);

mw_delete_shapes(shs);

Shapes MegaWave2 System Library Shapes 168

©Name

mw new shapes - Create a Shapes structure

©Summary

Shapes mw new shapes()

©Description

This function creates a new Shapes structure. The fields are initialized to 0 or NULLvalue. The function
returns the address of the new structure, or NULL if not enough memory is available.

©Example

Shapes shs;

/*

Define the structure

*/

shs = mw_new_shapes();

if (!shs) mwerror(FATAL,1,"Not enough memory to define the shapes !\n");

/*

At that time, the structure exists but is empty.

*/

Point type MegaWave2 System Library Point type 169

7.3 Point with a type field

The Point type structure is complementary to the Point curve structure (See Section 6.1): it is used
to record the type of the point, a valuable information in morphological shape-based algorithms. While
the Point curve structure was mainly defined to be used as part of a Curve structure, the Point type

structure is related to the Morpho line structure (See Section 7.7).

7.3.1 The structure Point type

This is the C definition of the structure:

typedef struct point_type {

unsigned char type; /* Type of the point, e.g. (exact meaning can vary; See modules)

0 : regular point;

1 : point in the image’s border;

2 : T-junction;

3 : Tau-junction;

4 : X-junction;

5 : Y-junction.

*/

struct point_type *previous; /* Pointer to the previous point (may be NULL) */

struct point_type *next; /* Pointer to the next point (may be NULL) */

} *Point_type;

7.3.2 Related file (external) types

Not available: at this time, the Point type object cannot be used as input/output variables of modules.
It can be saved as part of a Morpho line or Fmorpho line structure.

7.3.3 Functions Summary

The following is a description of all the functions related to the Point type type. The list is in alphabetical
order.

Point type MegaWave2 System Library Point type 170

©Name

mw change point type - Define the point type structure, if not defined

©Summary

Point type mw change point type(pt)

Point type pt;

©Description

This function returns a Point type structure if the input pt = NULL. It is provided despite the
mw_new_point_type() function for global coherence with other memory types.

The function mw_change_point_type returns NULL if not enough memory is available to allocate the
structure. Your code should check this return value to send an error message in the NULL case, and do
appropriate statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module, except if they are part of an input or
output chain.

©Example

Point_type pt=NULL; /* Internal use: no Input neither Output of module */

/* Define a point type as image border */

pt = mw_change_point_type(pt);

if (pt == NULL) mwerror(FATAL,1,"Not enough memory.\n");

pt->type = 1; /* image border */

Point type MegaWave2 System Library Point type 171

©Name

mw copy point type - Copy all point types starting from the given one

©Summary

Point type mw copy point type(in,out)

Point type in, out;

©Description

This function copies the current point type and the next point types contained in the chain defined at
the starting point type in. The result is put in out, which may not be a predefined structure : in case
of out=NULL, the out structure is allocated.

The function mw_copy_point_type returns NULL if not enough memory is available to perform the copy,
or out elsewhere. Your code should check this return value to send an error message in the NULL case,
and do appropriate statement.

©Example

Point_type in; /* Predefined point */

Point_type out=NULL;

out=mw_copy_point_type(in,out);

if (!out) mwerror(FATAL,1,"Not enough memory.\n");

Point type MegaWave2 System Library Point type 172

©Name

mw delete point type - Deallocate the point type structure

©Summary

void mw delete point type(pt)

Point type pt;

©Description

This function deallocates the Point type structures starting from the given pt, including this point itself.
You should set pt = NULL after this call since the address pointed by pt is no longer valid. To deallocate
a point only and not all the next points of the chain, just use free(pt).

©Example

/* Remove the first point_type of an existing morpho_line */

Morpho_line ll; /* Existing morpho_line (e.g. Input of module) */

Point_type pt; /* Internal use */

pt = ll->first_type;

ll->first_type=pt->next;

pt->next->previous = NULL;

free(pt);

pt = NULL;

/* Remove all point_type of an existing morpho_line */

mw_delete_point_type(ll->first_type);

Point type MegaWave2 System Library Point type 173

©Name

mw new point type - Create a new point type structure

©Summary

Point type mw new point type();

©Description

This function creates a new Point type structure. It returns NULL if not enough memory is available to
create the structure. Your code should check this value to send an error message in the NULL case, and
do appropriate statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal point structures before the end of the module, except if they are part of an
input or output curve.

©Example

/* Insert the point (0,0) with type 1 at the end of an existing morpho_line */

Morpho_line ll; /* Existing morpho_line (e.g. Input of module) */

Point_curve point,p; /* Internal use: no Input neither Output of module */

Point_type pt,t;

/* Define the point (0,0) with type 1 */

point = mw_new_point_curve();

if (point == NULL) mwerror(FATAL,1,"Not enough memory.\n");

pt = mw_new_point_type();

if (pt == NULL) mwerror(FATAL,1,"Not enough memory.\n");

point->x = point->y = 0;

pt->type=1;

/* Find the last point of the morpho_line */

p = ll->first_point; t = ll->first_type;

while (p->next) {p=p->next; t=t->next;}

/* Insert the point */

p->next = point;

t->next = pt;

point->previous = p;

pt->previous = t;

/* Do not deallocate point_curve and point_type or morpho_line will become inconsistent */

Hsegment MegaWave2 System Library Hsegment 174

7.4 Horizontal segment

The Hsegment structure is useful for describing all pixels belonging to a (connected or non-connected)
set, without taking the border into consideration. An horizontal segment is given by a left and a right
point. If the shape of the set is more height than width, you should rather use vertical segments (not yet
defined). The morpho set defined in Section 7.5 makes the use of the Hsegment structure, which defines
an horizontal segment.

7.4.1 The structure Hsegment

This is the C definition of the structure Hsegment:

typedef struct hsegment {

int xstart; /* Left x-coordinate of the segment */

int xend; /* Right x-coordinate of the segment */

int y; /* y-coordinate of the segment */

struct hsegment *previous; /* Pointer to the previous segment (may be NULL) */

struct hsegment *next; /* Pointer to the next segment (may be NULL) */

} *Hsegment;

7.4.2 Related file (external) types

Not available: at this time, the Hsegment object cannot be used as input/output variables of modules.
It can be saved as part of a Morpho set structure.

7.4.3 Functions Summary

The following is a description of all the functions related to the Hsegment type. The list is in alphabetical
order.

Hsegment MegaWave2 System Library Hsegment 175

©Name

mw change hsegment - Define the hsegment structure, if not defined

©Summary

Hsegment mw change hsegment(seg)

Hsegment seg;

©Description

This function returns a Hsegment structure if the input seg = NULL. It is provided despite the
mw_new_hsegment() function for global coherence with other memory types.

The function mw_change_hsegment returns NULL if not enough memory is available to allocate the struc-
ture. Your code should check this return value to send an error message in the NULL case, and do
appropriate statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module, except if they are part of an input or
output chain.

©Example

Hsegment seg=NULL; /* Internal use: no Input neither Output of module */

/* Define the horizontal segment (0,10)-(200,10) */

seg = mw_change_hsegment(seg);

if (seg == NULL) mwerror(FATAL,1,"Not enough memory.\n");

seg->xstart=0;

seg->xend=200;

seg->y=10;

Hsegment MegaWave2 System Library Hsegment 176

©Name

mw delete hsegment - Deallocate a chain of horizontal segments

©Summary

void mw delete hsegment(seg)

Hsegment seg;

©Description

This function deallocates the chain of horizontal segments starting from seg. Previous segments are not
deallocated. You should set seg = NULL after this call since the address pointed by seg is no longer
valid.

©Example

Hsegment seg0,newseg,oldseg;

int i;

/* Create a chain of 10 horizontal segments, starting from seg0 */

if (!(seg0=mw_new_hsegment())) mwerror(FATAL,1,"Not enough memory.\n");

seg0->xstart=0; seg0->xend=200; seg0->y=1;

oldseg=seg0;

for (i=2; i<=10; i++)

{

if (!(newseg=mw_new_hsegment())) mwerror(FATAL,1,"Not enough memory.\n");

newseg->xstart=0; newseg->xend=200; newseg->y=i;

newseg->previous=oldseg;

oldseg->next=newseg;

oldseg=newseg;

}

/* .

.

(statement)

.

.

*/

/* Deallocate the chain of segments */

mw_delete_hsegment(seg0);

Hsegment MegaWave2 System Library Hsegment 177

©Name

mw new hsegment - Create a new hsegment structure

©Summary

Hsegment mw new hsegment()

©Description

This function returns a new Hsegment structure, or NULL if not enough memory is available to allocate
the structure. Your code should check this return value to send an error message in the NULL case, and
do appropriate statement.

The new structure is created with fields set to 0 or NULL.

©Example

Hsegment seg; /* Internal use: no Input neither Output of module */

/* Define the horizontal segment (0,10)-(200,10) */

if (!(seg=mw_new_hsegment())) mwerror(FATAL,1,"Not enough memory.\n");

seg->xstart=0;

seg->xend=200;

seg->y=10;

Morpho set MegaWave2 System Library Morpho set 178

7.5 Morpho set

We call morpho set any connected component of set of the form {x : λ1 ≤ u(x) ≤ λ2}, this set being
noted in short by [λ1 ≤ u ≤ λ2]. Notice that for λ1 = −∞ we get a lower level set and for λ2 = +∞
an upper level set. In the case λ1 = λ2 the morpho set will be called iso set. The structure Morpho set

can be used to handle such morpho set. A Morpho set is given by a list of horizontal segments (See
Section 7.4), where levels λ1 and λ2 are recorded. Some additional information can be recorded, such as
the neighbor morpho sets. Please notice that some fields are likely to change in the future.

7.5.1 The structure Morpho set

This is the C definition of the structure Morpho set:

typedef struct morpho_set {

unsigned int num; /* Morpho set number (range in the Morpho_sets struct.) */

Hsegment first_segment; /* Pointer to the first segment of the morpho set */

Hsegment last_segment; /* Pointer to the last segment of the morpho set */

float minvalue; /* Minimum gray level value of this set */

float maxvalue; /* Maximum gray level value of this set */

unsigned char stated; /* 1 if this m.s. has already been stated, 0 otherwise */

int area; /* Area of the set (number of pixels belonging to this set) */

struct morpho_sets *neighbor; /* Pointer to a chain of neighbor morpho sets (may be NULL)*/

} *Morpho_set;

7.5.2 Related file (external) types

1. "MW2_MORPHO_SET" MegaWave2 binary format.

7.5.3 Functions Summary

The following is a description of all the functions related to the Morpho set type. The list is in alphabetical
order.

Morpho set MegaWave2 System Library Morpho set 179

©Name

mw change morpho set - Define a morpho set, if not already defined

©Summary

Morpho set mw change morpho set(ms)

Morpho set ms;

©Description

This function returns a Morpho set structure if the input ms = NULL. It is provided despite the
mw_new_morpho_set() function for global coherence with other memory types.

The function mw_change_morpho_set returns NULL if not enough memory is available to allocate the
structure. Your code should check this return value to send an error message in the NULL case, and do
appropriate statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module, except if they are part of an input or
output chain.

©Example

Morpho_set ms=NULL; /* Internal use: no Input neither Output of module */

Hsegment seg=NULL;

/* Define a morpho set containing one segment only */

if (!(seg=mw_change_hsegment(seg)) ||

!(ms=mw_change_morpho_set(ms))) mwerror(FATAL,1,"Not enough memory.\n");

seg->xstart=0;

seg->xend=200;

seg->y=10;

ms->first_segment=seg;

ms->minvalue=0.0;

ms->maxvalue = 1.0;

ms->area=201;

Morpho set MegaWave2 System Library Morpho set 180

©Name

mw copy morpho set - Copy a morpho set into another one

©Summary

Morpho set mw copy morpho set(in,out)

Morpho set in, out;

©Description

This function copies the Morpho set in into out. The chain of segments are also duplicated. The result is
put in out, which may not be a predefined structure : in case of out=NULL, the out structure is allocated.

The function mw_copy_morpho_set returns NULL if not enough memory is available to perform the copy,
or out elsewhere. Your code should check this return value to send an error message in the NULL case,
and do appropriate statement.

©Example

Morpho_set in; /* Predefined morpho_set */

Morpho_set out=NULL;

out=mw_copy_morpho_set(in,out);

if (!out) mwerror(FATAL,1,"Not enough memory.\n");

Morpho set MegaWave2 System Library Morpho set 181

©Name

mw delete morpho set - Deallocate a morpho set

©Summary

void mw delete morpho set(ms)

Morpho set ms;

©Description

This function deallocates the Morpho set ms, including the chain of horizontal segments. You should set
ms = NULL after this call since the address pointed by ms is no longer valid.

©Example

Morpho_set ms; /* Internal use: no Input neither Output of module */

Hsegment seg;

/* Define a morpho set containing one segment only */

if (!(seg=mw_new_hsegment()) ||

!(ms=mw_new_morpho_set())) mwerror(FATAL,1,"Not enough memory.\n");

seg->xstart=0;

seg->xend=200;

seg->y=10;

ms->first_segment=seg;

ms->minvalue=0.0;

ms->maxvalue = 1.0;

ms->area=201;

/* .

.

(statement)

.

.

*/

/* Deallocate the morpho_set */

mw_delete_morpho_set(ms);

Morpho set MegaWave2 System Library Morpho set 182

©Name

mw length morpho set - Return the number of segments a morpho set contains

©Summary

unsigned int mw length morpho set(ms)

Morpho set ms;

©Description

This function returns the number of segments contained in the input ms. It returns 0 if the structure is
empty or undefined.

©Example

Morpho_set ms=NULL; /* Internal use: no Input neither Output of module */

Hsegment seg=NULL;

/* Define a morpho set containing one segment only */

if (!(seg=mw_change_hsegment(seg)) ||

!(ms=mw_change_morpho_set(ms))) mwerror(FATAL,1,"Not enough memory.\n");

seg->xstart=0;

seg->xend=200;

seg->y=10;

ms->first_segment=seg;

ms->minvalue=0.0;

ms->maxvalue = 1.0;

ms->area=201;

/* This will print 1 */

printf("%d",mw_length_morpho_set(ms));

Morpho set MegaWave2 System Library Morpho set 183

©Name

mw new morpho set - Create a new morpho set

©Summary

Morpho set mw new morpho set()

©Description

This function returns a new Morpho set structure, or NULL if not enough memory is available to allocate
the structure. Your code should check this return value to send an error message in the NULL case, and
do appropriate statement.

The new structure is created with fields set to 0 or NULL.

©Example

Morpho_set ms; /* Internal use: no Input neither Output of module */

Hsegment seg;

/* Define a morpho set containing one segment only */

if (!(seg=mw_new_hsegment()) ||

!(ms=mw_new_morpho_set())) mwerror(FATAL,1,"Not enough memory.\n");

seg->xstart=0;

seg->xend=200;

seg->y=10;

ms->first_segment=seg;

ms->minvalue=0.0;

ms->maxvalue = 1.0;

ms->area=201;

Morpho sets MegaWave2 System Library Morpho sets 184

7.6 Chain of morpho sets

The Morpho sets structure is useful to record a set (or chain) of morpho sets. This structure is used by
the Mimage structure (See Section 7.9) to handle all the morpho sets an image contains.

7.6.1 The structure Morpho sets

This is the C definition of the structure Morpho sets:

typedef struct morpho_sets {

Morpho_set morphoset; /* Pointer to the current morpho set */

struct morpho_sets *previous; /* Pointer to the previous morpho sets of the chain */

struct morpho_sets *next; /* Pointer to the next morpho sets of the chain */

/* For use in Mimage only */

struct morpho_line *morpholine; /* Pointer to the associated morpho line */

} *Morpho_sets;

7.6.2 Related file (external) types

1. "MW2_MORPHO_SETS" MegaWave2 binary format.

7.6.3 Functions Summary

The following is a description of all the functions related to the Morpho sets type. The list is in alpha-
betical order.

Morpho sets MegaWave2 System Library Morpho sets 185

©Name

mw change morpho sets - Define a morpho sets, if not already defined

©Summary

Morpho sets mw change morpho sets(mss)

Morpho sets mss;

©Description

This function returns a Morpho sets structure if the input mss = NULL. It is provided despite the
mw_new_morpho_sets() function for global coherence with other memory types.

The function mw_change_morpho_sets returns NULL if not enough memory is available to allocate the
structure. Your code should check this return value to send an error message in the NULL case, and do
appropriate statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module, except if they are part of an input or
output chain.

©Example

Morpho_sets mss=NULL; /* Internal use: no Input neither Output of module */

Hsegment seg;

Morpho_set ms;

/* Define a morpho sets containing one morpho set */

if (!(seg=mw_new_hsegment()) ||

!(ms=mw_new_morpho_set()) ||

!(mss=mw_change_morpho_sets(mss))) mwerror(FATAL,1,"Not enough memory.\n");

seg->xstart=0;

seg->xend=200;

seg->y=10;

ms->first_segment=seg;

ms->minvalue=0.0;

ms->maxvalue = 1.0;

ms->area=201;

mss->morphoset=ms;

Morpho sets MegaWave2 System Library Morpho sets 186

©Name

mw copy morpho sets - Copy a morpho sets into another one

©Summary

Morpho sets mw copy morpho sets(in,out)

Morpho sets in, out;

©Description

This function copies the Morpho sets in into out. The Morpho set pointed by the in->morphoset field
is not only copied, but also all the chain starting from in. The neighbor Morpho sets pointed by each
Morpho set are also copied. The result is put in out, which may not be a predefined structure : in case
of out=NULL, the out structure is allocated.

The function mw_copy_morpho_sets returns NULL if not enough memory is available to perform the copy,
or out elsewhere. Your code should check this return value to send an error message in the NULL case,
and do appropriate statement.

©Example

Morpho_sets in; /* Predefined morpho_sets */

Morpho_sets out=NULL;

out=mw_copy_morpho_sets(in,out);

if (!out) mwerror(FATAL,1,"Not enough memory.\n");

Morpho sets MegaWave2 System Library Morpho sets 187

©Name

mw delete morpho sets - Deallocate a morpho sets

©Summary

void mw delete morpho sets(mss)

Morpho sets mss;

©Description

This function frees the Morpho set mss->morphoset, all the chain starting from mss and it deallocates
the Morpho sets mss structure. You should sets mss = NULL after this call since the address pointed by
mss is no longer valid.

©Example

Morpho_sets mss; /* Internal use: no Input neither Output of module */

Hsegment seg;

Morpho_set ms;

/* Define a morpho sets containing one morpho set */

if (!(seg=mw_new_hsegment()) ||

!(ms=mw_new_morpho_set()) ||

!(mss=mw_new_morpho_sets())) mwerror(FATAL,1,"Not enough memory.\n");

seg->xstart=0;

seg->xend=200;

seg->y=10;

ms->first_segment=seg; ms->minvalue=0.0; ms->maxvalue = 1.0; ms->area=201;

mss->morphoset=ms;

/* .

.

(statement)

.

.

*/

/* Deallocate the morpho_sets mss ; ms and seg will be also deallocated. */

mw_delete_morpho_set(mss);

Morpho sets MegaWave2 System Library Morpho sets 188

©Name

mw length morpho sets - Return the number of morpho sets a Morpho sets structure contains

©Summary

unsigned int mw length morpho sets(mss)

Morpho sets mss;

©Description

This function returns the number of morpho sets the Morpho sets structure mss contains, starting the
chain from the current position given by mss. It returns 0 if the structure is empty or undefined.

©Example

Morpho_sets mss; /* Internal use: no Input neither Output of module */

Hsegment seg;

Morpho_set ms;

/* Define a morpho sets containing one morpho set */

if (!(seg=mw_new_hsegment()) ||

!(ms=mw_new_morpho_set()) ||

!(mss=mw_new_morpho_sets())) mwerror(FATAL,1,"Not enough memory.\n");

seg->xstart=0;

seg->xend=200;

seg->y=10;

ms->first_segment=seg; ms->minvalue=0.0; ms->maxvalue = 1.0; ms->area=201;

mss->morphoset=ms;

/* This will print 1 */

printf("%d",mw_length_morpho_sets(mss));

Morpho sets MegaWave2 System Library Morpho sets 189

©Name

mw new morpho sets - Create a new morpho sets

©Summary

Morpho sets mw new morpho sets()

©Description

This function returns a new Morpho sets structure, or NULL if not enough memory is available to allocate
the structure. Your code should check this return value to send an error message in the NULL case, and
do appropriate statement.

The new structure is created with fields set to 0 or NULL.

©Example

Morpho_sets mss; /* Internal use: no Input neither Output of module */

Hsegment seg;

Morpho_set ms;

/* Define a morpho sets containing one morpho set */

if (!(seg=mw_new_hsegment()) ||

!(ms=mw_new_morpho_set()) ||

!(mss=mw_new_morpho_sets())) mwerror(FATAL,1,"Not enough memory.\n");

seg->xstart=0;

seg->xend=200;

seg->y=10;

ms->first_segment=seg;

ms->minvalue=0.0;

ms->maxvalue = 1.0;

ms->area=201;

mss->morphoset=ms;

Morpho line MegaWave2 System Library Morpho line 190

7.7 Morpho line

A morpho line is the border of a morpho set. Assuming a right choice of grid and point connectivity
so that a Jordan’s theorem follows, a morpho line is a closed curve dividing the grid in two connected
components : the interior of the morpho set and the exterior one. Actually, because an image has a
finite support, a morpho line may also intersects the image border : in such case, the curve remains
open. There is another restriction to the Jordan’s theorem : most of modules using morpho lines (such
as ml_extract) consider the 4-connectivity only in the square grid, so the border may cut the connected
component to several pieces and the corresponding morpho lines may be self-intersecting. Notice that if
the morpho set is a level set, the corresponding border is a level line. And if the morpho set is an iso set,
its border is an iso line.

The structure Morpho line can be used to handle such morpho line. First a Morpho line is a curve, so
the Point curve structure is used to record it (field first_point). There are additional fields, to give
information on the line (type of the points, closed or open curve) and to allow the reconstruction of the
morpho set (minvalue, maxvalue).

7.7.1 The structure Morpho line

This is the C definition of the structure Morpho line:

typedef struct morpho_line {

Point_curve first_point;/* Pointer to the first point of the morpho_line curve */

Point_type first_type; /* Pointer to the first Point_type */

float minvalue; /* Minimum gray level value of this morpho line */

float maxvalue; /* Maximum gray level value of this morpho line */

unsigned char open; /* 0 if the morpho line is closed, opened otherwise */

float data; /* User-defined data field (saved) */

void *pdata; /* User-defined data field : pointer to something (not saved) */

/* For use in Mimage only */

struct morpho_sets *morphosets;/* Pointer to the associated morpho sets */

unsigned int num; /* Morpho line number (range in the chain) */

struct morpho_line *previous; /* Pointer to the previous m.l. (may be NULL) */

struct morpho_line *next; /* Pointer to the next m.l. (may be NULL) */

} *Morpho_line;

7.7.2 Related file (external) types

1. "MW2_MORPHO_LINE" MegaWave2 binary format.

7.7.3 Functions Summary

The following is a description of all the functions related to the Morpho line type. The list is in alpha-
betical order.

Morpho line MegaWave2 System Library Morpho line 191

©Name

mw change morpho line - Define a morpho line, if not already defined

©Summary

Morpho line mw change morpho line(ml)

Morpho line ml;

©Description

This function returns a Morpho line structure if the input ml = NULL. It is provided despite the
mw_new_morpho_line() function for global coherence with other memory types.

The function mw_change_morpho_line returns NULL if not enough memory is available to allocate the
structure. Your code should check this return value to send an error message in the NULL case, and do
appropriate statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module, except if they are part of an input or
output chain.

©Example

/* Copy the curve of a morpho line into another morpho line */

Morpho_line in,out=NULL;

out=mw_change_morpho_line(out);

if (!out) mwerror(FATAL,1,"Not enough memory !\n");

out->open = in->open;

if (((out->first_point = mw_new_point_curve()) == NULL) ||

((out->first_type = mw_new_point_type()) == NULL))

mwerror(FATAL, 1,"Not enough memory !\n");

mw_copy_point_curve(in->first_point,out->first_point);

mw_copy_point_type(in->first_type,out->first_type);

Morpho line MegaWave2 System Library Morpho line 192

©Name

mw copy morpho line - Copy a morpho line into another one

©Summary

Morpho line mw copy morpho line(in,out)

Morpho line in, out;

©Description

This function copies the Morpho line in into out. All fields are copied but the following : pdata,
morphosets, num, previous and next. The result is put in out, which may not be a predefined structure
: in case of out=NULL, the out structure is allocated.

The function mw_copy_morpho_line returns NULL if not enough memory is available to perform the copy,
or out elsewhere. Your code should check this return value to send an error message in the NULL case,
and do appropriate statement.

©Example

Morpho_line in; /* Predefined morpho_line */

Morpho_line out=NULL;

out=mw_copy_morpho_line(in,out);

if (!out) mwerror(FATAL,1,"Not enough memory.\n");

Morpho line MegaWave2 System Library Morpho line 193

©Name

mw delete morpho line - Deallocate a morpho line

©Summary

void mw delete morpho line(ml)

Morpho line ml;

©Description

This function deallocates the Morpho line ml structure, including the curve (Point curve) and the chain
of types (Point type). Other pointers are not deallicated. You should line ml = NULL after this call since
the address pointed by ml is no longer valid.

©Example

Morpho_line ml; /* Internal use: no Input neither Output of module */

Point_curve pt;

/* Define a morpho line containing the point (0,0) only */

if (!(pt=mw_new_point_curve()) ||

!(ml=mw_new_morpho_line())) mwerror(FATAL,1,"Not enough memory.\n");

pt->x=pt->y=0;

ml->first_point=pt;

/* .

.

(statement)

.

.

*/

/* Deallocate the morpho_line */

mw_delete_morpho_line(ml);

Morpho line MegaWave2 System Library Morpho line 194

©Name

mw length morpho line - Return the number of points a morpho line contains

©Summary

unsigned int mw length morpho line(ml)

Morpho line ml;

©Description

This function returns the number of points contained in the input ml. It returns 0 if the structure is
empty or undefined. If the field first_type is not NULL, the number of points defined by this field must
equal the number of points in the curve.

©Example

Morpho_line ml; /* Internal use: no Input neither Output of module */

Point_curve pt;

/* Define a morpho line containing the point (0,0) only */

if (!(pt=mw_new_point_curve()) ||

!(ml=mw_new_morpho_line())) mwerror(FATAL,1,"Not enough memory.\n");

pt->x=pt->y=0;

ml->first_point=pt;

/* This will print 1 */

printf("%d",mw_length_morpho_line(ml));

Morpho line MegaWave2 System Library Morpho line 195

©Name

mw new morpho line - Create a new morpho line

©Summary

Morpho line mw new morpho line()

©Description

This function returns a new Morpho line structure, or NULL if not enough memory is available to allocate
the structure. Your code should check this return value to send an error message in the NULL case, and
do appropriate statement.

The new structure is created with fields set to 0 or NULL.

©Example

/* Copy the curve of a morpho line into another morpho line */

Morpho_line in,out;

out=mw_new_morpho_line();

if (!out) mwerror(FATAL,1,"Not enough memory !\n");

out->open = in->open;

if (((out->first_point = mw_new_point_curve()) == NULL) ||

((out->first_type = mw_new_point_type()) == NULL))

mwerror(FATAL, 1,"Not enough memory !\n");

mw_copy_point_curve(in->first_point,out->first_point);

mw_copy_point_type(in->first_type,out->first_type);

Fmorpho line MegaWave2 System Library Fmorpho line 196

7.8 Morpho line in the continuous plane

The structure Fmorpho line is used to handle morpho lines in the continuous plane. Indeed, if the morpho
lines obtained from digital images contain discrete (integer) coordinates, one may want to process the
morpho lines using continuous operators, such as geometric smoothing. The resulting morpho lines are no
more made by discrete coordinates. In a Fmorpho line, the points are recorded using the Point fcurve

structure (See Section 6.6).

7.8.1 The structure Fmorpho line

This is the C definition of the structure Fmorpho line:

typedef struct fmorpho_line {

Point_fcurve first_point;/* Pointer to the first point of the fmorpho_line curve */

Point_type first_type; /* Pointer to the first Point_type */

float minvalue; /* Minimum gray level value of this morpho line */

float maxvalue; /* Maximum gray level value of this morpho line */

unsigned char open; /* 0 if the morpho line is closed, opened otherwise */

float data; /* User-defined data field (saved) */

void *pdata; /* User-defined data field : pointer to something (not saved) */

/* For use in Mimage only */

struct fmorpho_line *previous; /* Pointer to the previous m.l. (may be NULL) */

struct fmorpho_line *next; /* Pointer to the next m.l. (may be NULL) */

} *Fmorpho_line;

7.8.2 Related file (external) types

1. "MW2_FMORPHO_LINE" MegaWave2 binary format.

7.8.3 Functions Summary

We won’t waste space to describe functions related to the Fmorpho line structure : they are the same than
those related to Morpho line, except that the name “morpho line” has to be changed to “fmorpho line”.

7.9 Morphological image

A morphological image may record in a structure called Mimage all morpho sets and morpho lines the
image contains. It is therefore potentially a very redundant (and very huge) structure, but this plenty
of information may be useful to perform morphological operations. Of course, not all fields need to be
set as the same time, for example a Mimage may contain the level lines only. But from this (complete)
information, all other fields may be computed.

The Mimage structure has been created before the Shapes structure was developed (See Section 7.2). It
does not use the tree structure associated to FLST-based algorithms. For this reason, the Shapes object
should be preferred to the Mimage one for future developments.

Mimage MegaWave2 System Library Mimage 197

7.9.1 The structure Mimage

This is the C definition of the structure Mimage:

typedef struct mimage {

char cmt[mw_cmtsize]; /* Comments */

char name[mw_namesize]; /* Name of the set */

int nrow; /* Number of rows (dy) */

int ncol; /* Number of columns (dx) */

float minvalue; /* Minimal Gray level value in the image */

float maxvalue; /* Maximal Gray level value in the image */

Morpho_line first_ml; /* Pointer to the first morpho line in the discrete grid */

Fmorpho_line first_fml; /* Pointer to the first morpho line in the continuous plane */

Morpho_sets first_ms; /* Pointer to the first morpho sets in the discrete grid */

} *Mimage;

7.9.2 Related file (external) types

1. "MW2_MIMAGE" MegaWave2 binary format.

7.9.3 Functions Summary

The following is a description of all the functions related to the Mimage type. The list is in alphabetical
order.

Mimage MegaWave2 System Library Mimage 198

©Name

mw change mimage - Define a morphological image, if not already defined

©Summary

Mimage mw change mimage(mi)

Mimage mi;

©Description

This function returns a Mimage structure if the input mi = NULL. It is provided despite the
mw_new_mimage() function for global coherence with other memory types.

The function mw_change_mimage returns NULL if not enough memory is available to allocate the structure.
Your code should check this return value to send an error message in the NULL case, and do appropriate
statement.

Since the MegaWave2 compiler allocates structures for input and output objects (See Volume one:
“MegaWave2 User’s Guide”), this function is normally used only for internal objects. Do not forget
to deallocate the internal structures before the end of the module, except if they are part of an input or
output chain.

©Example

/* Copy the morpho lines only of a morphological image into another morphological image */

Mimage in,out=NULL;

out=mw_change_mimage(out);

if (!out) mwerror(FATAL,1,"Not enough memory !\n");

out->nrow = in->nrow;

out->ncol = in->ncol;

out->minvalue=in->minvalue;

out->maxvalue=in->maxvalue;

if (in->firstml)

{

out->firstml=mw_copy_morpho_line(in->firstml, out->firstml);

if (!out->firstml) mwerror(FATAL, 1,"Not enough memory !\n");

}

Mimage MegaWave2 System Library Mimage 199

©Name

mw copy mimage - Copy a morphological image into another one

©Summary

Mimage mw copy mimage(in,out)

Mimage in, out;

©Description

This function copies the Mimage in into out. All fields are copied, including the chains of Morpho sets,
Morpho line and Fmorpho line. The result is put in out, which may not be a predefined structure : in
case of out=NULL, the out structure is allocated.

The function mw_copy_mimage returns NULL if not enough memory is available to perform the copy, or
out elsewhere. Your code should check this return value to send an error message in the NULL case, and
do appropriate statement.

©Example

mimage in; /* Predefined mimage */

mimage out=NULL;

out=mw_copy_mimage(in,out);

if (!out) mwerror(FATAL,1,"Not enough memory.\n");

Mimage MegaWave2 System Library Mimage 200

©Name

mw delete mimage - Deallocate a morphological image

©Summary

void mw delete mimage(mi)

mimage mi;

©Description

This function deallocates the Mimage mi structure, including the chains of Morpho sets, Morpho line

and Fmorpho line. You should line mi = NULL after this call since the address pointed by mi is no longer
valid.

©Example

Mimage mi; /* Internal use: no Input neither Output of module */

Morpho_line ml;

Point_curve pt;

Fmorpho_line fml;

Point_fcurve fpt;

Morpho_sets mss;

Hsegment seg;

Morpho_set ms;

/* Define a morpho line containing the point (0,0) only */

if (!(pt=mw_new_point_curve()) ||

!(ml=mw_new_morpho_line())) mwerror(FATAL,1,"Not enough memory.\n");

pt->x=pt->y=0;

ml->first_point=pt;

/* Define a fmorpho line containing the point (0.5,0.5) only */

if (!(fpt=mw_new_point_fcurve()) ||

!(fml=mw_new_fmorpho_line())) mwerror(FATAL,1,"Not enough memory.\n");

fpt->x=fpt->y=0.5;

fml->first_point=fpt;

/* Define a morpho sets containing one morpho set */

Mimage MegaWave2 System Library Mimage 201

if (!(seg=mw_new_hsegment()) ||

!(ms=mw_new_morpho_set()) ||

!(mss=mw_new_morpho_sets())) mwerror(FATAL,1,"Not enough memory.\n");

seg->xstart=0;

seg->xend=200;

seg->y=10;

ms->first_segment=seg; ms->minvalue=0.0; ms->maxvalue = 1.0; ms->area=201;

mss->morphoset=ms;

/* Define a morphological image made by one morpho line, one fmorpho line and

one morpho sets.

*/

if (!(mi=mw_new_morpho_line())) mwerror(FATAL,1,"Not enough memory.\n");

mi->first_ml=ml;

mi->first_fml=fml;

mi->first_ms=ms;

/* .

.

(statement)

.

.

*/

/* Deallocate the mimage, including ml, fml and ms */

mw_delete_mimage(mi);

Mimage MegaWave2 System Library Mimage 202

©Name

mw length fml mimage - Return the number of morpho lines a morphological image contains

©Summary

unsigned int mw length fml mimage(mi)

Mimage mi;

©Description

This function returns the number of fmorpho lines contained in the input mi. It returns 0 if the structure
is empty or undefined.

©Example
See example page 203.

Mimage MegaWave2 System Library Mimage 203

©Name

mw length ml mimage - Return the number of morpho lines a morphological image contains

©Summary

unsigned int mw length ml mimage(mi)

Mimage mi;

©Description

This function returns the number of morpho lines contained in the input mi. It returns 0 if the structure
is empty or undefined.

©Example

Mimage mi; /* Internal use: no Input neither Output of module */

Morpho_line ml;

Point_curve pt;

Fmorpho_line fml;

Point_fcurve fpt;

Morpho_sets mss;

Hsegment seg;

Morpho_set ms;

/* Define a morpho line containing the point (0,0) only */

if (!(pt=mw_new_point_curve()) ||

!(ml=mw_new_morpho_line())) mwerror(FATAL,1,"Not enough memory.\n");

pt->x=pt->y=0;

ml->first_point=pt;

/* Define a fmorpho line containing the point (0.5,0.5) only */

if (!(fpt=mw_new_point_fcurve()) ||

!(fml=mw_new_fmorpho_line())) mwerror(FATAL,1,"Not enough memory.\n");

fpt->x=fpt->y=0.5;

fml->first_point=fpt;

/* Define a morpho sets containing one morpho set */

Mimage MegaWave2 System Library Mimage 204

if (!(seg=mw_new_hsegment()) ||

!(ms=mw_new_morpho_set()) ||

!(mss=mw_new_morpho_sets())) mwerror(FATAL,1,"Not enough memory.\n");

seg->xstart=0;

seg->xend=200;

seg->y=10;

ms->first_segment=seg; ms->minvalue=0.0; ms->maxvalue = 1.0; ms->area=201;

mss->morphoset=ms;

/* Define a morphological image made by one morpho line, one fmorpho line and

one morpho sets.

*/

if (!(mi=mw_new_morpho_line())) mwerror(FATAL,1,"Not enough memory.\n");

mi->first_ml=ml;

mi->first_fml=fml;

mi->first_ms=ms;

/* This will print 1 */

printf("%d",mw_length_ml_mimage(mi));

/* This will print 1 */

printf("%d",mw_length_fml_mimage(mi));

/* This will print 1 */

printf("%d",mw_length_ms_mimage(mi));

Mimage MegaWave2 System Library Mimage 205

©Name

mw length ms mimage - Return the number of morpho sets a morphological image contains

©Summary

unsigned int mw length ms mimage(mi)

Mimage mi;

©Description

This function returns the number of morpho sets contained in the input mi. It returns 0 if the structure
is empty or undefined.

©Example
See example page 203.

Mimage MegaWave2 System Library Mimage 206

©Name

mw new mimage - Create a new morphological image

©Summary

Mimage mw new mimage()

©Description

This function returns a new Mimage structure, or NULL if not enough memory is available to allocate the
structure. Your code should check this return value to send an error message in the NULL case, and do
appropriate statement.

The new structure is created with fields set to 0 or NULL.

©Example

/* Copy the morpho lines only of a morphological image into another morphological image */

Mimage in,out;

out=mw_new_mimage();

if (!out) mwerror(FATAL,1,"Not enough memory !\n");

out->nrow = in->nrow;

out->ncol = in->ncol;

out->minvalue=in->minvalue;

out->maxvalue=in->maxvalue;

if (in->firstml)

{

out->firstml=mw_copy_morpho_line(in->firstml, out->firstml);

if (!out->firstml) mwerror(FATAL, 1,"Not enough memory !\n");

}

Raw data MegaWave2 System Library Raw data 207

8 Unstructured material or raw data

When none of the previous structures matches your need, or when you want to write or to read files in a
format which is not recognized by MegaWave2, use the raw data type : this internal type allows you to
load/save any kind of data from/to disk.

8.1 The structure Rawdata

The Rawdata structure is nothing else than an array of bytes (data field). The size of the array is set in
the size field.

typedef struct rawdata {

int size; /* Number of samples */

unsigned char *data; /* data field */

} *Rawdata;

8.2 Related file (external) types

There is no file types associated to the Rawdata structure : when the content of a Rawdata variable is
written into a file, the content of the file is exactly the content of the data field. There is no header
added. Consequently, file of any format can be loaded into a Rawdata variable. If this file contains a
header (as most of MegaWave2 file formats), the header will be loaded into the data field together with
the data themselves. Of course, there cannot be any conversion format associated to Rawdata.

8.3 Functions Summary

The following is a description of all the functions related to the Rawdata type. The list is in alphabetical
order.

Raw data MegaWave2 System Library Raw data 208

©Name

mw alloc rawdata - Allocate the data array of a Rawdata structure

©Summary

Rawdata mw alloc rawdata(rd,size)

Rawdata rd;

int size;

©Description

This function allocates the data array of a Rawdatastructure previously created using mw_new_rawdata.
The size of the data is given by size, it corresponds to the number of bytes.

Values can be addressed after this call, if the allocation successed. There is no default values.

Do not use this function if rd has already an allocated array: use the function mw_change_rawdata

instead.

The function mw_alloc_rawdata returns NULL if not enough memory is available to allocate the array.
Your code should check this return value to send an error message in the NULL case, and do appropriate
statement.

©Example

Rawdata rd=NULL; /* Internal use: no Input neither Output of module */

int i;

/* Create a rawdata of 1000 bytes */

if (((rd = mw_new_rawdata()) == NULL) ||

(mw_alloc_rawdata(rd,1000) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

/* Set the byte #i to the value i mod 256 */

for (i=0;i<rd->size;i++) rd->data[i] = i % 256;

Raw data MegaWave2 System Library Raw data 209

©Name

mw change rawdata - Change the size of the data array of a Rawdata structure

©Summary

Rawdata mw change rawdata(rd, newsize)

Rawdata rd;

int newsize;

©Description

This function changes the memory allocation of the data array of a Rawdata structure, even if no previ-
ously memory allocation was done. The new size of the array is given by newsize, it corresponds to the
number of allocated bytes.

The function mw_change_rawdata can also create the structure if the input rd = NULL. Therefore, this
function can replace both mw_new_rawdata and mw_alloc_rawdata. It is the recommended function to
allocate Rawdata variables used as input/output of modules. Since the function can set the address of
rd, the variable must be set to the return value of the function (See example below).

The function mw_change_rawdata returns NULL if not enough memory is available to allocate the array.
Your code should check this return value to send an error message in the NULL case, and do appropriate
statement.

©Example

Rawdata Output; /* Output of module */

/* Set the size of the array to be 1000 bytes */

Output = mw_change_rawdata(Output, 1000);

if (Output == NULL) mwerror(FATAL,1,"Not enough memory.\n");

Raw data MegaWave2 System Library Raw data 210

©Name

mw copy rawdata - Copy the data of a Rawdata+ structure into another one

©Summary

void mw copy rawdata(in, out)

Rawdata in,out;

©Description

This function copies the content of the array data of the Rawdata+ structure in into the array data of
out. The variable out must be an allocated Rawdata structure of same size than in.

The speed of this function depends to the C library implementation, but it is usually very fast (trying to
do faster is a waste of time).

©Example

Rawdata G; /* Needed Input */

Rawdata F; /* Optional Output */

if (F) {

printf("F option is active: copy G in F\n");

if ((F = mw_change_rawdata(F, G->size)) == NULL)

mwerror(FATAL,1,"Not enough memory.\n");

else mw_copy_rawdata(G, F);

}

else printf("F option is not active\n");

Raw data MegaWave2 System Library Raw data 211

©Name

mw delete rawdata - Deallocate the data array of a Rawdata structure

©Summary

void mw delete rawdata(rd)

Rawdata rd;

©Description

This function deallocates the array values of a Rawdata structure previously allocated using
mw_alloc_rawdata or mw_change_rawdata, and the structure itself.

You should set rd = NULL after this call since the address pointed by rd is no longer valid.

©Example

Rawdata rd=NULL; /* Internal use: no Input neither Output of module */

if (((rd = mw_new_rawdata()) == NULL) ||

(mw_alloc_rawdata(rd,1000) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

/* .

.

(statement)

.

.

*/

mw_delete_rawdata(rd);

rd = NULL;

Raw data MegaWave2 System Library Raw data 212

©Name

mw new rawdata - Create a new Rawdata structure

©Summary

Rawdata mw new rawdata();

©Description

This function creates a new Rawdata structure with an empty data array and size field set to 0. No
data can be addressed at this time. The data should be allocated using the function mw_alloc_rawdata

or mw_change_rawdata.

Do not use this function for input/output of modules, since the MegaWave2 Compiler already created the
structure for you if you need it (See Volume one: “MegaWave2 User’s Guide”). Use instead the function
mw_change_rawdata. Do not forget to deallocate the internal structures before the end of the module.

The function mw_new_rawdata returns NULL if not enough memory is available to create the structure.
Your code should check this value to send an error message in the NULL case, and do appropriate statement.

©Example

Rawdata rd=NULL; /* Internal use: no Input neither Output of module */

if (((rd = mw_new_rawdata()) == NULL) ||

(mw_alloc_rawdata(rd,1000) == NULL))

mwerror(FATAL,1,"Not enough memory.\n");

Miscellaneous Features MegaWave2 System Library Miscellaneous Features 213

9 Miscellaneous Features

You will find in this section some utilities which may help you to write your modules. Contrary to the
former sections, some functions described here are not about a memory format.

9.1 Global System Variables

At any time in a module, you can access to the following external variables. Those variables are for
reading only, do not change their values ! Notice that you don’t have to define those variables in your
module, the definitions are done into the include file mw.h.

• char *mwname : This variable contains the name of the current module.

• char *mwgroup : This variable contains the group name of the current module, as for example
"common/signal" which means that the current module belongs to the subgroup signal which is
part of the main group common.

• int mwerrcnt : Give the number of time the function mwerror has be called with the argument
ERROR (see section 9.3 page 215). Since ERROR is not a fatal event, the user has the possibility to
terminate the algorithm by checking mwerrcnt, if too many errors have been encountered.

• int mwrunmode : The value of this variable indicates in which context the module is executed.

– If set to 1, the module is called in the run-time mode;

– if set to 2, the module is called by the window-oriented interpreter (XMegaWave2).

9.2 Conversion between memory types

The System Library contains functions to convert memory types. However do not expect to find a
function to convert structures which are very dissimilar, as Curves and Cimage. If the meaning one can
give of a conversion is not evident or not unique, a conversion procedure has to be implemented as a
module rather than as a system function.

Conversion function summaries follow the following rule : out = (Y) mw_x_to_y(in,old) where x is the
internal C type of the input in, y the internal C type of the requested output out (letters in lowercase)
and Y the cast to the output (internal C type of out with first letter in uppercase). In the last argument
old you may put the name of a variable of type Y : in such a case, the memory allocation will be reused
for out (the pointer old will have the same address than out). This is especially useful when converting
lot of images with same size, to avoid memory blowup. If you do not want to use this possibility, just
put NULL as the last argument : memory for out will be allocated.

In addition to the various mw_x_to_y() undocumented conversion functions, there exists an “all-purpose”
conversion function called mw_conv_internal_type() and documented next page.

Conv. Memory types MegaWave2 System Library Conv. Memory types 214

©Name

mw conv internal type - Convert any possible internal type to another one

©Summary

void *mw conv internal type(mwstruct,typein,typeout)

void *mwstruct; /* Any type of MegaWave2 structure */

char *typein; /* Type of the input ¡mwstruct¿ */

char *typeout; /* Type of the output structure */

©Description

This function may be used instead of the mw_x_to_y() various functions to convert any possible internal
type a to b, even if the mw_a_to_b() function does not exist : the system creates mw_conv_internal_type()
by analyzing existing mw_x_to_y() functions, by finding the shortest path between two internal types, say
a and b, and by calling appropriate mw_x_to_y() functions (for example, mw_a_to_c() and mw_c_to_b()

if those functions exist).

The input mwstruct is a variable of internal C type given by the string typein (use lower letters only).
The output of the function is a variable of internal C type given by the string typeout, or NULL if the
conversion is impossible.

Do not forget to cast the output to the right type.

©Example

Ccimage in;

Cimage out1;

Fimage out2;

/* The line */

out1 = (Cimage) mw_conv_internal_type(in,"ccimage","cimage");

/* is equivalent to */

out1 = (Cimage) mw_ccimage_to_cimage(in);

if (out1==NULL) mwerror(FATAL,1,"Cannot convert Ccimage to Cimage !\n");

/* But to convert a Ccimage to a Fimage you shall use */

out2 = (Fimage) mw_conv_internal_type(in,"ccimage","fimage");

/* Since the following function does not exist at this time */

out2 = (Fimage) mw_ccimage_to_fimage(in);

if (out2==NULL) mwerror(FATAL,1,"Cannot convert Ccimage to Fimage !\n");

Mis.Sys.Functions MegaWave2 System Library Mis.Sys.Functions 215

9.3 Miscellaneous System Functions

The following is a description of some miscellaneous system functions which may be of interest for the
user. The list is in alphabetical order.

The most usefull are mwerror and mwdebug. Please notice that you need to process any error (especially
memory allocation failure) by displaying an error message using mwerror, and by doing appropriate
statement.

Some other functions are about dynamic memory allocation. They are important, since you are discour-
aged to use static memory allocation (as double data[10000]), but you may skip their description if
you are familiar with the standard C dynamic memory functions.

Mis.Sys.Functions MegaWave2 System Library Mis.Sys.Functions 216

©Name

mwcalloc - Dynamic memory allocation

©Summary

void *mwcalloc (nelem, elsize)

unsigned nelem, elsize;

©Description

This function allocates space for an array of nelem elements, each of size elsize bytes, and initializes
the space to zeros.

This function returns a pointer to space suitably aligned (after possible pointer coercion) for storage of
any type of object. Do not forget to cast the return value to the right type of your variable (see example
below). If not enough memory is available to allocate the array, the function returns NULL. Your code
should check this return value to send an error message in the NULL case, and do appropriate statement.

Each space allocated by mwcalloc must be deallocated using mwcfree before exiting the module.

Notice that in the MegaWave2 modules, the standard C function calloc is redefined to be mwcalloc.
Therefore, if you use calloc in your code you actually call mwcalloc.

©Example

float *data=NULL; /* Internal use: no Input neither Output of module */

/* Allocates space for 1000 samples of float values */

if ((data = (float *) mwcalloc (1000, sizeof(float))) == NULL)

mwerror(FATAL,1,"Not enough memory.\n");

/* Set the sample #i to the value i */

for (i=0;i<1000;i++) data[i] = i;

Mis.Sys.Functions MegaWave2 System Library Mis.Sys.Functions 217

©Name

mwcfree - Dynamic memory deallocation

©Summary

void mwcfree (ptr)

char *ptr;

©Description

This function deallocates the space pointed to by ptr and which has previously been allocated by
mwcalloc. It does nothing if ptr = NULL.

You should set ptr to NULLafter this call since the address pointed to by ptr is no longer valid.

Notice that in the MegaWave2 modules, the standard C function cfree is redefined to be mwcfree.
Therefore, if you use cfree in your code you actually call mwcfree.

©Example

float *data=NULL; /* Internal use: no Input neither Output of module */

/* Allocates space for 1000 samples of float values */

if ((data = (float *) mwcalloc (1000, sizeof(float))) == NULL)

mwerror(FATAL,1,"Not enough memory.\n");

.

. (statement)

.

/* End of statement: deallocation of the array */

mwcfree((char *) data);

Mis.Sys.Functions MegaWave2 System Library Mis.Sys.Functions 218

©Name

mwdebug - print if debug

©Summary

void mwdebug(format, . . .);

char *format;

©Description

This function prints its arguments in . . . under control of the format in format, exactly in the same
manner that the standard C function printf does. The string <dbg> is added to the beginning of the
line.

The print is active only when the module has been called with the debugging option on.

©Example

Fimage image;

int x,y;

for (x=0;x<image->ncol;x++) for (y=0;y<image->nrow;y++)

{

mwdebug("processing pixel (%d,%d)...\n",x,y);

.

. (statement)

.

}

Mis.Sys.Functions MegaWave2 System Library Mis.Sys.Functions 219

©Name

mwerror - print an error message

©Summary

void mwerror(type, exit code, format, . . .);

int type;

int exit code;

char *format;

©Description

This function prints its arguments in . . . under control of the format in format on the standard error
output, in the same manner that the standard C function fprintf(stdout,format,...) does.

A message is added to the print, and an action may be performed, according to the value in type :

• WARNING : the additional message is MegaWave warning (mwname) : (following is the requested
print);

• ERROR : the additional message is MegaWave error (mwname) : (following is the requested
print), and the variable mwerrcnt is incremented.

• FATAL : the additional message is MegaWave fatal (mwname) : (following is the requested
print), and a call to mwexit(exit_code) is performed.

• INTERNAL : the additional message is MegaWave internal (mwname) : (following is the re-
quested print), and a call to mwexit(exit_code) is performed. Use it when such error normally
never may occur. Then, such event points out a fault of the algorithm and the code should be fixed.
One uses to add in the beginning of the print the text [X] where X is the name of the function
where the error has been found, in order to make easier the debugging process (see example below).

• USAGE : after the requested print, is printing the usage of the module. Use it when the input values
you get in your module function does not correspond to what the usage requests.

©Example

/* Compute some norm of any fimage */

static float fnorm(image)

Fimage image;

{ float norm; /* result of the computation */

.

. (statement)

Mis.Sys.Functions MegaWave2 System Library Mis.Sys.Functions 220

.

if (norm < 0.0)

mwerror(INTERNAL,1,"[fnorm] Negative norm value computed ! (norm=%f)",norm);

else return(norm);

}

Mis.Sys.Functions MegaWave2 System Library Mis.Sys.Functions 221

©Name

mwexit - Module termination

©Summary

void mwexit (status)

int status;

©Description

This function causes normal program termination of a MegaWave2 module. The variable status indicates
the status of the module when the termination occurred; value 0 means successful termination, other
values are user-dependent.

Notice that in the MegaWave2 modules, the standard C function exit is redefined to be mwexit. There-
fore, if you use exit in your code you actually call mwexit.

©Example

Fimage image; /* Output of module */

/* Try several times an allocation of a fimage of size 256x256 */

while (mw_alloc_fimage(image,256,256) == NULL)

{

mwerror(ERROR,1,"Not enough memory !\n");

if (mwerrcnt > 10) mwexit(-1);

sleep(2); /* Wait 2 seconds */

}

Mis.Sys.Functions MegaWave2 System Library Mis.Sys.Functions 222

©Name

mwfree - Dynamic memory deallocation

©Summary

void mwfree (ptr)

char *ptr;

©Description

This function deallocates the space pointed to by ptr and which has previously been allocated by
mwmalloc. It does nothing if ptr = NULL.

You should set ptr to NULLafter this call since the address pointed to by ptr is no longer valid.

Notice that in the MegaWave2 modules, the standard C function free is redefined to be mwfree. There-
fore, if you use free in your code you actually call mwfree.

©Example

float *data=NULL; /* Internal use: no Input neither Output of module */

/* Allocates space for 1000 samples of float values */

if ((data = (float *) mwmalloc (1000*sizeof(float))) == NULL)

mwerror(FATAL,1,"Not enough memory.\n");

.

. (statement)

.

/* End of statement: deallocation of the array */

mwfree((char *) data);

Mis.Sys.Functions MegaWave2 System Library Mis.Sys.Functions 223

©Name

mwmalloc - Dynamic memory allocation

©Summary

void *mwmalloc (size)

size t size;

©Description

This function allocates space for a block of at least size bytes, but does not initialize the space.

This function returns a pointer to space suitably aligned (after possible pointer coercion) for storage of
any type of object. Do not forget to cast the return value to the right type of your variable (see example
below). If not enough memory is available to allocate the array, the function returns NULL. Your code
should check this return value to send an error message in the NULL case, and do appropriate statement.

Each space allocated by mwmalloc must be deallocated using mwfree before exiting the module.

Notice that in the MegaWave2 modules, the standard C function malloc is redefined to be mwmalloc.
Therefore, if you use malloc in your code you actually call mwmalloc.

©Example

long *data=NULL; /* Internal use: no Input neither Output of module */

/* Allocates space for 5000 samples of long values */

if ((data = (long *) mwmalloc (5000*sizeof(long))) == NULL)

mwerror(FATAL,1,"Not enough memory.\n");

/* Set the sample #i to the value i */

for (i=0;i<5000;i++) data[i] = i;

Mis.Sys.Functions MegaWave2 System Library Mis.Sys.Functions 224

©Name

mwrealloc - Dynamic memory re-allocation

©Summary

void *mwrealloc(ptr, size)

char *ptr; unsigned size;

©Description

This function changes the size of the block pointed to by ptr to size bytes and returns a pointer to the
(possibly moved) block. Existing contents are unchanged up to the lesser of the new and old sizes. If ptr
is a NULLpointer, mwrealloc behaves like mwmalloc for the specified size. If size is zero and ptr is not
a NULLpointer, the object it points to is freed and NULLis returned.

If not enough memory is available to allocate the array, the function returns NULL. Your code should
check this return value to send an error message in the NULL case, and do appropriate statement.

Do not forget to cast the return value to the right type of your variable, and to cast the type of the input
pointer ptr to be char * (see example below).

Each space allocated by mwrealloc must be deallocated using mwfree before exiting the module.

Notice that in the MegaWave2 modules, the standard C function realloc is redefined to be mwrealloc.
Therefore, if you use realloc in your code you actually call mwrealloc.

©Example

long *ldata=NULL; /* Internal use: no Input neither Output of module */

double *ddata=NULL;

/* Allocates space for 5000 samples of long values */

if ((ldata = (long *) mwmalloc (5000*sizeof(long))) == NULL)

mwerror(FATAL,1,"Not enough memory.\n");

.

.

.

/* Re-allocates space for 2000 samples of double values, using space allocated

for ldata

*/

if ((ddata = (double *) mwrealloc ((char *) ldata, 2000*sizeof(double))) == NULL)

mwerror(FATAL,1,"Not enough memory.\n");

/* Warning : do not use anymore the array ldata ! */

Wdevice Library MegaWave2 System Library Wdevice Library 225

10 Wdevice Library and window facilities

The Wdevice library provides an interface to the window manager: it helps the user to write modules
which have to access to the window manager resources, as the screen, the mouse, etc. It not only replaces
some painful operations which require a lot of code (such opening a window, mapping the content of an
image into a window, etc.) to a simple call to one function, but it provides also an interface which is
independant to the type of the window system: the calls to the Wdevice functions remain the same even
if the window system changes (and the result should be the same).

This library is independant to the MegaWave2 System Library although some modules cannot be linked
without it : it is added when needed during the link process of a MegaWave2 command. Of course, one
Wdevice library per window system is needed. At this time, there exists a Wdevice library for the X
Window System Version 11 (X11) only. In the past, one could find a Wdevice library for the Suntools
System but, because of the renunciation of Suntools from Sun MicroSystem, this library is no longer
maintained (and no longer distributed).

On can found in the system library some packages that use functions defined by Wdevice to perform
more high-levels tasks, such as Wpanel : The Wpanel (Panel display facilities) is a small package that
allows to handle buttons and bars. It is not documented yet, and will probably change quite much in the
future. For the time being, it is used only in the module llview.c.

10.1 Functions Summary

The following is a description of the Wdevice library functions which may be called by the user. The list
is in alphabetical order.

You may notice that each function name begins with the letter W.

Warning: the functions summary is not documented yet. If you need to access to the screen into
a MegaWave2 module (e.g. to draw some figure, etc.) please read the code of the following public
MegaWave2 modules, and take inspiration from those:

• view_demo.c;

• cview.c;

• ccview.c;

• cmview.c;

• splot.c;

• readpoly.c.

Nevertheless, and because those MegaWave2 modules already exist, you are not likely to really need to
learn about the Wdevice library.

Index

array of points, see list
audio, 78

biorthogonal wavelet transform, 85

C type , see structure
color model, 47

HSI, 47
HSV, 47
RGB, 47
YUV, 47

continuous wavelet transform, 85
contrast change, 154
convert memory types, 213
curve, 108

dyadic wavelet transform, 85
dynamic memory allocation, 215

external type, see file format
external variable, 213

mwerrcnt, 213
mwgroup, 213
mwname, 213
mwrunmode, 213

Fast Level Set Transform, 154
file format, 7

A FSIGNAL, 77
A POLY, 126, 132
A WTRANS1D, 86
A WTRANS2D, 99
BIN, 10
BMP, 10
BMPC, 23
EPSF, 10
GIF, 10
IMG, 9
INR, 10
JFIF, 10
JFIFC, 23
MTI, 10
MW2 CURVE, 114
MW2 CURVES, 120
MW2 DLIST, 153
MW2 DLISTS, 153
MW2 FLIST, 138
MW2 FLISTS, 146
MW2 FMORPHO LINE, 196
MW2 MIMAGE, 197

MW2 MORPHO LINE, 190
MW2 MORPHO SET, 178
MW2 MORPHO SETS, 184
MW2 SHAPE, 155, 164
PGMA, 9
PGMR, 9
PM C, 9
PM F, 36
PMC C, 23
PMC F, 48
PPM, 23
PS, 10
RIM, 36
TIFF, 9
TIFFC, 23
WAVE PCM, 78

file type, see file format
FLST, see Fast Level Set Transform
frame, 85
function, 6

mw alloc biortho wtrans1d, 88
mw alloc biortho wtrans2d, 100
mw alloc ccimage, 24
mw alloc cfimage, 49
mw alloc cimage, 11
mw alloc continuous wtrans1d, 90
mw alloc dyadic wtrans1d, 92
mw alloc dyadic wtrans2d, 102
mw alloc fimage, 37
mw alloc fsignal, 79
mw alloc ortho wtrans1d, 94
mw alloc ortho wtrans2d, 104
mw alloc polygon, 127
mw alloc rawdata, 208
mw alloc shapes, 165
mw change ccimage, 25
mw change ccmovie, 66
mw change cfimage, 50
mw change cfmovie, 74
mw change cimage, 12
mw change cmovie, 62
mw change curve, 115
mw change curves, 121
mw change fimage, 38
mw change flist, 139
mw change flists, 147
mw change fmovie, 70
mw change fsignal, 80
mw change hsegment, 175

226

Index MegaWave2 System Library Index 227

mw change mimage, 198
mw change morpho line, 191
mw change morpho set, 179
mw change morpho sets, 185
mw change point curve, 110
mw change point type, 170
mw change polygon, 128
mw change polygons, 133
mw change rawdata, 209
mw change shape, 156
mw change shapes, 166
mw clear ccimage, 26
mw clear cfimage, 51
mw clear cimage, 13
mw clear fimage, 39
mw clear flist, 140
mw clear fsignal, 81
mw conv internal type, 214
mw copy ccimage, 27
mw copy cfimage, 52
mw copy cimage, 14
mw copy curve, 116
mw copy fimage, 40
mw copy flist, 141
mw copy flists, 148
mw copy fsignal, 82
mw copy mimage, 199
mw copy morpho line, 192
mw copy morpho set, 180
mw copy morpho sets, 186
mw copy point curve, 111
mw copy point type, 171
mw copy rawdata, 210
mw delete ccimage, 28
mw delete ccmovie, 67
mw delete cfimage, 53
mw delete cfmovie, 75
mw delete cimage, 15
mw delete cmovie, 63
mw delete curve, 117
mw delete curves, 122
mw delete fimage, 41
mw delete flist, 142
mw delete flists, 149
mw delete fmovie, 71
mw delete fsignal, 83
mw delete hsegment, 176
mw delete mimage, 200
mw delete morpho line, 193
mw delete morpho set, 181
mw delete morpho sets, 187
mw delete point curve, 112

mw delete point type, 172
mw delete polygon, 129
mw delete polygons, 134
mw delete rawdata, 211
mw delete shape, 157
mw delete shapes, 167
mw delete wtrans1d, 96
mw delete wtrans2d, 106
mw draw ccimage, 29
mw draw cfimage, 54
mw draw cimage, 16
mw draw fimage, 42
mw enlarge flist, 143
mw enlarge flists, 150
mw get first child shape, 158
mw get next sibling shape, 159
mw get not removed shape, 160
mw get parent shape, 161
mw get smallest shape, 162
mw getdot ccimage, 30
mw getdot cfimage, 55
mw getdot cimage, 17
mw getdot fimage, 43
mw isitbinary cimage, 18
mw length curve, 118
mw length curves, 123
mw length fml mimage, 202
mw length ml mimage, 203
mw length morpho line, 194
mw length morpho set, 182
mw length morpho sets, 188
mw length ms mimage, 205
mw length polygon, 130
mw length polygons, 135
mw new ccimage, 31
mw new ccmovie, 68
mw new cfimage, 56
mw new cfmovie, 76
mw new cimage, 19
mw new cmovie, 64
mw new curve, 119
mw new curves, 124
mw new fimage, 44
mw new flist, 144
mw new flists, 151
mw new fmovie, 72
mw new fsignal, 84
mw new hsegment, 177
mw new mimage, 206
mw new morpho line, 195
mw new morpho set, 183
mw new morpho sets, 189

Index MegaWave2 System Library Index 228

mw new point curve, 113
mw new point type, 173
mw new polygon, 131
mw new polygons, 136
mw new rawdata, 212
mw new shape, 163
mw new shapes, 168
mw new wtrans1d, 97
mw new wtrans2d, 107
mw newtab blue ccimage, 32
mw newtab blue cfimage, 57
mw newtab gray cimage, 20
mw newtab gray fimage, 45
mw newtab green ccimage, 33
mw newtab green cfimage, 58
mw newtab red ccimage, 34
mw newtab red cfimage, 59
mw npoints curves, 125
mw plot ccimage, 35
mw plot cfimage, 60
mw plot cimage, 21
mw plot fimage, 46
mw realloc flist, 145
mw realloc flists, 152
mwcalloc, 216
mwcfree, 217
mwdebug, 218
mwerror, 219
mwexit, 221
mwfree, 222
mwmalloc, 223
mwrealloc, 224

image, 8
internal type , see structure
iso line, 190
iso set, 178

JPEG, see file format:JFIF,JFIFC

level line, 190
level set, 154

lower, 154, 178
upper, 154, 178

list, 137

memory type , see structure
morpho line, 190
morpho set, 178
morphological image, 196
morphological representation, 154
movie, 61

object, 6
one-dimensional wavelet, 85
orthogonal wavelet transform, 85

panel, see Wpanel
point, 108
polygon, 108

raw data, 207

search path, 7
segment

horizontal, 174
set of points, see curve, see segment
shape, 154
signal, 77
sound processing, 78
speech processing, 78
structure, 6

Ccimage , 22
Ccmovie , 65
Cfimage , 47
Cfmovie , 73
Cimage , 9
Cmovie , 61
Curve, 114
Curves, 120
Dcurve, 137
Dcurves, 137
Dlist, 153
Dlists, 153
Fcurve, 137
Fcurves, 137
Fimage , 36
Flist, 137
Flists, 146
Fmorpho line, 196
Fmovie , 69
Fpolygon, 137
Fpolygons, 137
Fsignal, 77
Hsegment, 174
Mimage, 197
Morpho line, 190
Morpho set, 178
Morpho sets, 184
Point curve, 108
Point dcurve, 137
Point fcurve, 137
Point type, 169
Polygon, 126
Polygons, 132

Index MegaWave2 System Library Index 229

Rawdata, 207
Shape, 154
Shapes, 164
Wtrans1d , 85
Wtrans2d , 98

Suntools, 225

two-dimensional wavelet, 98

wavelet, 85
wavelet maxima representation, 85
wavelet transform, 85
Wdevice library, 225
window manager, 225
Wpanel, 225

X Window System, 225

