next up previous contents index
Next: amss Up: Reference Previous: fzoom   Contents   Index

fzrt

$ \bigcirc$Name


fzrt Zoom, Rotate then translate an image




$ \bigcirc$Command Synopsis


fzrt [-o o] [-p p] [-b b] in out zoom angle x y



-o o : order: 0,1=linear,-3=cubic,3,5..11=spline, default 3

-p p : Keys' parameter (when o=-3), in [-1,0], default -0.5

-b b : background grey value, default: 0.0

in : input Fimage

out : output Fimage

zoom : zoom factor

angle : rotation angle (in degrees, counterclockwise)

x : translation vector (x coordinate)

y : translation vector (y coordinate)




$ \bigcirc$Function Summary


void fzrt (in , out , zoom , angle , x , y , o , p , b )

Fimage in , out ;

float zoom , angle , x , y ;

int *o ;

float *p , *b ;




$ \bigcirc$Description


This module transforms the image in(a, b) into out(A, B), where

$\displaystyle \left(\vphantom{ \begin{array}{c} A \\  B \end{array} }\right.$$\displaystyle \begin{array}{c} A \\  B \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{c} A \\  B \end{array} }\right)$     =     $\displaystyle \left(\vphantom{ \begin{array}{cc} zoom \cdot \cos(\theta) & - zo...
...
zoom \cdot \sin(\theta) & \;\;\;zoom\cdot\cos(\theta) \\  \end{array} }\right.$$\displaystyle \begin{array}{cc} zoom \cdot \cos(\theta) & - zoom \cdot\sin(\theta) \\
zoom \cdot \sin(\theta) & \;\;\;zoom\cdot\cos(\theta) \\  \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{cc} zoom \cdot \cos(\theta) & - zo...
...
zoom \cdot \sin(\theta) & \;\;\;zoom\cdot\cos(\theta) \\  \end{array} }\right)$  $\displaystyle \left(\vphantom{ \begin{array}{c} b \\  b \end{array} }\right.$$\displaystyle \begin{array}{c} b \\  b \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{c} b \\  b \end{array} }\right)$   +  $\displaystyle \left(\vphantom{ \begin{array}{c} x \\  y \end{array} }\right.$$\displaystyle \begin{array}{c} x \\  y \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{c} x \\  y \end{array} }\right)$

and $\displaystyle \theta$ = angle . $\displaystyle {\frac{{\pi}}{{180}}}$. The image domain is the same. The interpolation method can be specified as in fcrop.




$ \bigcirc$See Also


fproj.




$ \bigcirc$Version 1.0


Last Modification date : Thu Nov 29 20:23:56 2001


$ \bigcirc$Author


Lionel Moisan






next up previous contents index
Next: amss Up: Reference Previous: fzoom   Contents   Index
mw 2004-05-05