next up previous contents index
Next: median Up: Reference Previous: ll_sharp   Contents   Index

mam

$ \bigcirc$Name


mam Multiscale Analysis of Movies (restoration by using selective directional diffusion and motion)




$ \bigcirc$Command Synopsis


mam [-t time] [-n niter] [-r power] [-q MAXvit] [-w MINvit] [-a fmxa] input output



-t time : time step (default: 0.4)

-n niter : number of iterations (default: 1)

-r power : accel power (default: 0.5)

-q MAXvit : maximal velocity (default: 10)

-w MINvit : minimal velocity (default: 0)

-a fmxa : maximal acceleration (default: 1)

input : input movie

output : output movie




$ \bigcirc$Function Summary


void mam (in , out , ptime , ppower , n_iter , pMAXvit , pMINvit , pfmxa )

Cmovie in , out ;

float *ptime , *ppower ;

int *n_iter ;

short *pMAXvit , *pMINvit , *pfmxa ;




$ \bigcirc$Description


This module implements the fundamental equation of movie analysis [AGLM93],

$\displaystyle {\frac{{\partial u}}{{\partial t}}}$ = |$\displaystyle \nabla$u| (tcurv(u))$\scriptstyle {\frac{{1}}{{3}}}$$\displaystyle \left(\vphantom{\left[curv(u) accel(u) \vert t curv(u)\vert^{-\frac{1}{3}} \right] ^+ }\right.$$\displaystyle \left[\vphantom{curv(u) accel(u) \vert t curv(u)\vert^{-\frac{1}{3}} }\right.$curv(u)accel (u)| tcurv(u)|-$\scriptstyle {\frac{{1}}{{3}}}$$\displaystyle \left.\vphantom{curv(u) accel(u) \vert t curv(u)\vert^{-\frac{1}{3}} }\right]^{+}_{}$$\displaystyle \left.\vphantom{\left[curv(u) accel(u) \vert t curv(u)\vert^{-\frac{1}{3}} \right] ^+ }\right)^{q}_{}$. (9)
The parameters are :

Note that the first and last images of the input movie u are not processed, because the acceleration is not defined on the temporal frontier of a movie. The complexity of the algorithm is O(| u|.niter.(2*fmxa + 1)2.$ \Delta^{2}_{}$), where $ \Delta$ = MAXvit - MINvit + 1. Processing one iteration on a 256x256x10 movie with default velocity parameters and fmxa = 0 takes 30 minutes on a Sparc 10. For a description of the algorithm used to compute the curvature, see the module amss.




$ \bigcirc$Version 2.24


Last Modification date : Fri Apr 16 11:22:59 2004


$ \bigcirc$Author


Frederic Guichard, Lionel Moisan






next up previous contents index
Next: median Up: Reference Previous: ll_sharp   Contents   Index
mw 2004-05-05