Name
ws_flow Weickert and Schnoerr optical flow computation
Command Synopsis
ws_flow [-p percent] [-n n] [-t tau] [-l lambda] [-E eps] [-A alpha] [-R norm_movie] movie wsU wsV
-p percent : if set, stop when | E(n)-E(n-1) | < E(1)*percent/100
-n n : maximum number of iterations, default 100
-t tau : time-step, default 0.166666
-l lambda : contrast parameter, default 1
-E eps : epsilon (may be arbitrary small), default 0.000001
-A alpha : weight of divergence term in pde, default 500.
-R norm_movie : optional output: optical flow norm
movie : Input Fmovie
wsU : Fmovie of OF_{1}(x,y)
wsV : Fmovie of OF_{2}(x,y)
Function Summary
void ws_flow (percent , n , tau , lambda , eps , alpha , norm , movie , wsU , wsV )
float *percent ;
int *n ;
float *tau , *lambda , *eps , *alpha ;
Fmovie norm ;
Fmovie movie , wsU , wsV ;
Description
ws_flow
is an implementation of the Weickert and Schnörr optical flow computation by a semi-implicit scheme (in comparison of other schemes, it is quasi-explicit). In [WS01], they consider a functional where the gradients of the two components of the flow are 3D-gradients, i.e.
f = (,,)^{T} and they do not separate the 3D-gradients of the two components
(,) of the velocity
= | div^{3}((||^{2} + ||^{2})) - u_{x}(u^{ . } + u_{t}) | |
= | div^{3}((||^{2} + ||^{2})) - u_{y}(u^{ . } + u_{t}) |
Exemple of use:
ws_flow cmovie /tmp/U /tmp/V ofdraw /tmp/U /tmp/V /tmp/disp cmview -l /tmp/disp &
See Also
fop.
Version 1.0
Last Modification date : Thu Apr 15 06:26:51 2004
Author
Florent Ranchin