next up previous contents index
Next: dyowave2 Up: Reference Previous: biowave2   Contents   Index

dybiowave2

$ \bigcirc$Name


dybiowave2 Computes the biorthogonal wavelet coefficients of an image without decimation




$ \bigcirc$Command Synopsis


dybiowave2 [-r NLevel] [-d StopDecimLevel] [-o] [-e EdgeMode] [-n FiltNorm] Image WavTrans ImpulseResponse1 ImpulseResponse2



-r NLevel : Number of levels (default 1)

-d StopDecimLevel : Level for decimation stop (default 2)

-o : Computes orthogonal coefficients

-e EdgeMode : Edge processing mode (0/1/2, default 2)

-n FiltNorm : Normalization mode for filter bank (default 0)

Image : Input image (fimage)

WavTrans : Wavelet transform of Image (wtrans2d)

ImpulseResponse1 : Impulse response of filter 1 (fsignal)

ImpulseResponse2 : Impulse response of filter 2 (fsignal)




$ \bigcirc$Function Summary


void dybiowave2 (NumRec , StopDecim , Ortho , Edge , FilterNorm , Image , Output , Ri1 , Ri2 )

int *NumRec ;

int *StopDecim ;

int *Ortho ;

int *Edge ;

int *FilterNorm ;

Fimage Image ;

Wtrans2d Output ;

Fsignal Ri1 , Ri2 ;




$ \bigcirc$Description


dybiowave2 computes the biorthogonal wavelet coefficients of the floating point image stored in the file Image, using filter banks associated to biorthogonal bases of wavelets. The main difference with the biowave2 module is that the decimation is not performed for levels higher than StopDecimLevel (-d option). This means that if j is greater than StopDecimLevel, then one has in the 1D formalism :

Aj[n] = $\displaystyle \sum_{{k}}^{}$$\displaystyle \tilde{{h}}_{{k-n}}^{}$Aj-1[k]      
Dj[n] = $\displaystyle \sum_{{k}}^{}$$\displaystyle \tilde{{g}}_{{k-n}}^{}$Aj-1[k]      

instead of
Aj[n] = $\displaystyle \sum_{{k}}^{}$$\displaystyle \tilde{{h}}_{{k-2n}}^{}$Aj-1[k]      
Dj[n] = $\displaystyle \sum_{{k}}^{}$$\displaystyle \tilde{{g}}_{{k-2n}}^{}$Aj-1[k]      

If the -o option is selected, then one has (replacing StopDecimLevel by jd to simplify the notations) for j > jd and 0 $ \leq$ m < 2j-jd :

Aj[2j-jdn + m] = $\displaystyle \sum_{{k}}^{}$$\displaystyle \tilde{{h}}_{{k-n}}^{}$Aj-1[2j-jdk + m]      
Dj[2j-jdn + m] = $\displaystyle \sum_{{k}}^{}$$\displaystyle \tilde{{g}}_{{k-n}}^{}$Aj-1[2j-jdk + m]      

This makes possible to interpret the coeffients {Aj[2j-jdn + m]}n and {Dj[2j-jdn + m]}n as the coefficients of the wavelet transform of the original signal (or image) translated by a factor of m2jd.

The -r, -e and -n options have the same meaning as for biowave1 and biowave2 modules.




$ \bigcirc$See Also


sconvolve.

fwlbg_adap.


$ \bigcirc$Version 1.1


Last Modification date : Thu Apr 1 16:42:08 2004


$ \bigcirc$Author


Jean-Pierre D'Ales






next up previous contents index
Next: dyowave2 Up: Reference Previous: biowave2   Contents   Index
mw 2004-05-05