next up previous contents index
Next: ibiowave1 Up: Reference Previous: dybiowave2   Contents   Index

dyowave2

$ \bigcirc$Name


dyowave2 Computes the orthogonal wavelet coefficients of an image without decimation




$ \bigcirc$Command Synopsis


dyowave2 [-r NLevel] [-d StopDecimLevel] [-o] [-e EdgeMode] [-p PrecondMode] [-n FiltNorm] Image WavTrans ImpulseResponse [EdgeIR ]



-r NLevel : Number of levels (default 1)

-d StopDecimLevel : Level for decimation stop (default 2)

-o : Computes orthogonal coefficients

-e EdgeMode : Edge processing mode (0/1/2/3, default 3)

-p PrecondMode : Edge preconditionning mode (0/1/2, default 2)

-n FiltNorm : Filter taps normalization. 0: no normalization, 1: sum equal to 1.0, 2: squares sum equal to 1.0 (default)

Image : Input image (fimage)

WavTrans : Wavelet transform of Image (wtrans2d)

ImpulseResponse : Impulse response of inner filters (fsignal)

EdgeIR : Impulse reponses of edge and preconditionning filters (fimage)




$ \bigcirc$Function Summary


void dyowave2 (NumRec , StopDecim , Ortho , Edge , Precond , FilterNorm , Image , Output , Ri , Edge_Ri )

int *NumRec ;

int *StopDecim ;

int *Ortho ;

int *Edge ;

int *Precond ;

int *FilterNorm ;

Fimage Image ;

Wtrans2d Output ;

Fsignal Ri ;

Fimage Edge_Ri ;




$ \bigcirc$Description


dyowave2 computes the orthogonal wavelet coefficients of the floating point image stored in the file Image, using filter banks associated to an orthogonal basis of wavelets. The main difference with the owave2 module is that the decimation is not performed for levels higher than StopDecimLevel (-d option). This means that if j is greater than StopDecimLevel, then one has in the 1D formalism :

Aj[n] = $\displaystyle \sum_{{k}}^{}$hk-nAj-1[k]      
Dj[n] = $\displaystyle \sum_{{k}}^{}$gk-nAj-1[k]      

instead of
Aj[n] = $\displaystyle \sum_{{k}}^{}$hk-2nAj-1[k]      
Dj[n] = $\displaystyle \sum_{{k}}^{}$gk-2nAj-1[k]      

If the -o option is selected, then one has (replacing StopDecimLevel by jd to simplify the notations) for j > jd and 0 $ \leq$ m < 2j-jd :

Aj[2j-jdn + m] = $\displaystyle \sum_{{k}}^{}$hk-nAj-1[2j-jdk + m]      
Dj[2j-jdn + m] = $\displaystyle \sum_{{k}}^{}$gk-nAj-1[2j-jdk + m]      

This makes possible to interpret the coeffients {Aj[2j-jdn + m]}n and {Dj[2j-jdn + m]}n as the coefficients of the wavelet transform of the original signal (or image) translated by a factor of m2jd.

The -r, -e, -p and -n options have the same meaning as for owave1 and owave2 modules.




$ \bigcirc$See Also


owave2.

fwlbg_adap.


$ \bigcirc$Version 1.1


Last Modification date : Thu Apr 1 16:42:14 2004


$ \bigcirc$Author


Jean-Pierre D'Ales






next up previous contents index
Next: ibiowave1 Up: Reference Previous: dybiowave2   Contents   Index
mw 2004-05-05