next up previous contents index
Next: Index Up: guid3 Previous: stkwave1   Contents   Index


Bibliography

ADK99
G. Aubert, R. Deriche, and P. Kornprobst.
Image sequence analysis via partial differential equations.
J. of Mathematical Imaging and Vision, 11(1):5-26, 1999.
Cited by motionseg.

ADV03
A. Almansa, A. Desolneux, and S. Vamech.
Vanishing point detection without any a priory information.
IEEE Trans. Pattern Analysis and Machine Intell., 25(4):502-507, 2003.
Cited by vpoint, align_mdl.

AGLM93
L. Alvarez, F. Guichard, P-L. Lions, and J-M. Morel.
Axioms and fundamental equations of image processing.
Arch. Rational Mechanics and Anal., 16(9):200-257, 1993.
Cited by amss, mam.

Alm02
A. Almansa.
Echantillonnage, interpolation et détection. Applications en imagerie satellitaire.
PhD thesis, CMLA, Ecole Normale Supérieure de Cachan, France, 2002.
Online access at http://www.cmla.ens-cachan.fr/Utilisateurs/almansa/these.html.
Cited by vpoint, align_mdl.

Aro67
G. Aronsson.
Extension of functions satisfying lipschitz conditions.
Ark. Math., 6:551-561, 1967.
Cited by amle_init, amle.

BCM01
C. Ballester, V. Caselles, and P. Monasse.
The tree of shapes of an image.
Preprint CMLA 2001-02, available at http://www.cmla.ens-cachan.fr/Cmla/Publications/2001/CMLA2001-02.ps.gz, 2001.
Cited by flst.

Can86
J. Canny.
A computational approach to edge detection.
IEEE Trans. Pattern Ana. and Machine Intell., 8:679-698, 1986.
Cited by canny.

Cao98
F. Cao.
Absolutely minimizing lipschitz extension with discontinuous boundary data.
Note aux C.R. Acad. Sci. Paris, t.327(I):563-568, 1998.
Cited by amle_init, amle.

Cat95
F. Catté.
Convergence of iterated affine and morphological filters by nonlinear semi-group theory.
Preprint Ceremade no 9528, Univ. Paris IX Dauphine, http://www.ceremade.dauphine.fr, 1995.
Cited by skeleton, infsup.

CCCD93
V. Caselles, F. Catté, B. Coll, and F. Dibos.
A geometric model for active contours in image processing.
Numer. Math., 66:1-31, 1993.
Cited by lsnakes_demo, lsnakes.

CCM96
V. Caselles, B. Coll, and J-M. Morel.
A kanizsa programme.
In Progress in Nonlinear Differential Equs. and their Applications, pages 35-55, 1996.
Cited by ml_decompose, tjpoint, ml_draw, tjmap.

CCM99
V. Caselles, B. Coll, and J-M. Morel.
Topographic maps and local contrast changes in natural images.
Int. J. Comp. Vision, 33(1):5-27, 1999.
Cited by ml_decompose, tjpoint, ml_draw, tjmap.

CD93
F. Catté and F. Dibos.
A morphological approach of mean curvature motion.
Preprint Ceremade no 9310, Univ. Paris IX Dauphine, 1993.
Cited by skeleton, infsup.

CDF92
A. Cohen, I. Daubechies, and J-C. Feauveau.
Biorthogonal bases of compactly supported wavelets.
Commun. in Pure and Appl. Math., 45(5), 1992.
Cited by ibiowave1, ibiowave2, Fwlbg_adap, biowave1, biowave2.

CDK94
F. Catté, F. Dibos, and G. Koepfler.
A morphological scheme for mean curvature motion and applications to anisotropic diffusion and motion of level sets.
In Proc. of 12th Int. Conf. on Pattern Recognition, Jerusalem, Israel, 1994.
Cited by skeleton, infsup.

CDV93
A. Cohen, I. Daubechies, and P. Vial.
Wavelets and fast wavelet transforms on an interval.
Applied and Comput. Harmonic Ana., 1:54-81, 1993.
Cited by owave1.

CF00
B. Coll and J. Froment.
Topographic maps of color images.
In Proc. of ICPR'2000, volume 3, pages 613-616, 2000.
Cited by cll_remove, cml_draw, cml_decompose, cml_reconstruct.

CKS97
V. Caselles, R. Kimmel, and G. Sapiro.
Geodesic active contours.
Int. J. Comp. Vision, 1(22):61-79, 1997.
Cited by mac_snakes.

CL97
A. Chambolle and P-L. Lions.
Image recovery via total variation minimization and related problems.
Numer. Math., 76:167-188, 1997.
Cited by cfmdiffuse, cfdiffuse.

CLMS99
V. Caselles, J-L. Lisani, J-M. Morel, and G. Sapiro.
Shape preserving local histogram modification.
IEEE Trans. on Image Proc., 8(2):220-230, 1999.
Available at http://www.iua.upf.es/~vcaselles/papers_v/ShapeLHisto.pdf.
Cited by ccontrast_local.

CM01
F. Cao and L. Moisan.
Geometric computation of curvature driven plane curve evolution.
SIAM J. Numer. Anal., 39(2):624-646, 2001.
Cited by gcsf.

CMS98
V. Caselles, J-M. Morel, and C. Sbert.
An axiomatic approach to image interpolation.
IEEE Trans. on Image Proc., 7(3):376-386, 1998.
Cited by amle_init, amle.

CMS03
F. Cao, P. Musé, and F. Sur.
Extracting shape elements from images.
Research Report Inria 5067, http://www.inria.fr/rrrt/rr-5067.html, submitted to JMIV, 2003.
Cited by ll_boundaries2.

Coh94
T. Cohignac.
Reconnaissance de formes planes.
PhD thesis, Université Paris IX Dauphine, France, 1994.
Cited by sr_normalize.

Dau88
I. Daubechies.
Orthonormal bases of compactly supported wavelets.
Commun. in Pure and Appl. Math., 41:909-996, 1988.
Cited by owave1.

Der87
R. Deriche.
Using canny's criteria to derive a recursively implemented optimal edge detector.
Int. J. Comp. Vision, pages 167-187, 1987.
Cited by canny.

DF01
S. Durand and J. Froment.
Artifact free signal denoising with wavelets.
In Proc. of ICASSP'01, volume 6, 2001.
Cited by stvrestore, Swtvdenoise.

DF03
S. Durand and J. Froment.
Reconstruction of wavelet coefficients using total variation minimization.
SIAM J. Sci. Comput., 24(5):1754-1767, 2003.
Online access at http://epubs.siam.org/sam-bin/dbq/article/39779.
Cited by stvrestore, Swtvdenoise.

DJ94
D. Donoho and I. Johnstone.
Ideal spatial adaptation via wavelet shrinkage.
Biometrika, 81:425-455, 1994.
Cited by frthre, w1threshold.

DLMM02
A. Desolneux, S. Ladjal, L. Moisan, and J.-M. Morel.
Dequantizing image orientation.
IEEE Trans. on Image Proc., 10:1129-1140, 2002.
Cited by align_mdl.

DMM00
A. Desolneux, L. Moisan, and J-M. Morel.
Meaningful alignments.
Int. J. Comp. Vision, 40(1):7-23, 2000.
Cited by align.

DMM01
A. Desolneux, L. Moisan, and J-M. Morel.
Edge detection by helmholtz principle.
J. Math. Imaging and Vision, 14(3):271-284, 2001.
Cited by ll_boundaries2, ll_edges, ll_boundaries.

DMM03
A. Desolneux, L. Moisan, and J-M. Morel.
Variational snakes theory.
In S. Osher and N. Paragios, editors, Geometric Level Set Methods in Imaging, Vision and Graphics. Springer Verlag, 2003.
Cited by mac_snakes.

Don95
D. Donoho.
De-noising by soft-thresholding.
IEEE Trans. on Info. Theory, 41:613-627, 1995.
Cited by w1threshold.

FL90
P. Fua and Y.G. Leclerc.
Model driven edge detection.
Machine Vision and Applications, 3:45-56, 1990.
Cited by mac_snakes.

Fre74
H. Freeman.
Computer processing of line drawings.
Comput. Surveys, 6:57-97, 1974.
Cited by cvsencode, cvsfrecode.

Fro99
J. Froment.
A functional analysis model for natural images permitting structured compression.
ESAIM:COCV Control, Opt. and Cal. of Var., 4:473-495, 1999.
Online access at http://www.edpsciences.org/articles/cocv/abs/1999/01/cocvVol4-18/cocvVol4-18.html.
Cited by llremove, amle_init, cvsencode, tjpoint, cvsfrecode, tjmap, amle, ll_remove.

Fro00
J. Froment.
Perceptible level lines and isoperimetric ratio.
In Proc. of ICIP'2000, volume 2, pages 112-115, 2000.
Cited by llremove, ll_remove.

GG92
A. Gersho and R.M. Gray.
Vector quantization and signal compression.
Kluwer Ac. Pub., Boston, 1992.
Cited by flbg_adap, Fwvq, fwvq, fvq, flbg, flbg_train.

GH86
M. Gage and R.S. Hamilton.
The heat equation shrinking convex plane curves.
J. of Differential Geometry, 23:69-96, 1986.
Cited by fksmooth.

GM95
F. Guichard and J.-M. Morel.
Partial differential equations and image iterative filtering.
preprint Ceremade no 9535, Univ. Paris IX Dauphine http://www.ceremade.dauphine.fr, 1995.
Cited by infsup.

Gra87
M.A. Grayson.
The heat equation shrinks embedded plane curves to round points.
J. of Differential Geometry, 26:285-314, 1987.
Cited by fksmooth.

Gui94
F. Guichard.
Axiomatisation des analyses multi-echelles d'images et de films.
PhD thesis, Univ. Paris IX Dauphine, France, 1994.
Cited by skeleton, infsup.

HS81
B.K.P. Horn and B.G. Schunck.
Determining optical flow.
Artificial Intelligence, 17:185-203, 1981.
Cited by hs_flow.

HS88
C.G. Harris and M. Stephens.
A combined corner and edge detector.
In 4th Alvey Vision Conference, pages 189-192, Manchester, 1988.
Cited by harris.

KB02
R. Kimmel and A. Bruckstein.
On edge detection, edge integration and geometric active contours.
In Proc. Int. Symposium on Mathematical Morphology (ISMM 2002), Sydney, 2002.
Cited by mac_snakes.

KLM94
G. Koepfler, C. Lopez, and J.-M. Morel.
A multiscale algorithm for image segmentation by variational method.
SIAM J. of Num. Analysis, 31-1:282-299, 1994.
Cited by segtxt.

KWT87
M. Kass, A. Witkin, and D. Terzopoulos.
Snakes: active contour models.
In IEEE Int. Comp. Vis. Conf., volume 777, 1987.
Cited by mac_snakes.

LBG80
Y. Linde, A. Buzo, and R.M. Gray.
An algorithm for vector quantizer design.
IEEE Trans. on Com., 28:84-95, 1980.
Cited by flbg_adap, flbg, flbg_train.

Lis01
J-L. Lisani.
Comparaison automatique d'images par leurs formes.
PhD thesis, Université Paris IX Dauphine, France, 2001.
Cited by km_codecurve_si, km_match_ai, km_match_si, km_prematchings, km_codecurve_ai.

LMMM03
J-L. Lisani, P. Monasse, L. Moisan, and J-M. Morel.
On the theory of planar shape.
SIAM J. on Multiscale Modeling and Simulation, 1(1):1-24, 2003.
Cited by km_codecurve_si, km_match_ai, km_match_si, km_prematchings, km_codecurve_ai.

LP62
H.J. Landau and H.O. Pollak.
Prolate spheroidal wave functions, fourier analysis and uncertainty (iii): the dimension of the space of essentially time and bandlimited signals.
Bell System Technical Journal, 41:1295-1336, 1962.
Cited by prolate.

Mal89
S. Mallat.
A theory for multiresolution signal decomposition, the wavelet representation.
IEEE Trans. Pattern Ana. and Machine Intell., 2(7), 1989.
Cited by iowave1, iowave2, stkwave1, owave1, owave2.

Mal97
S. Mallat.
A wavelet tour of signal processing.
Academic Press, 1997.
Cited by owave1.

Mas02
S. Masnou.
Disocclusion : a variational approach using level line.
IEEE Trans. on Image Proc., 11(2):68-76, 2002.
Cited by disocclusion.

MG99
P. Monasse and F. Guichard.
Scale-space from a level lines tree.
In Scale-Space Theories in Computer Vision, pages 175-186. Lecture Notes in Computer Science 1682, 1999.
Cited by fgrain, flst.

MG00
P. Monasse and F. Guichard.
Fast computation of a contrast-invariant image representation.
IEEE Trans. on Image Proc., 9(5):860-872, 2000.
Preprint CMLA 9815, available at http://www.cmla.ens-cachan.fr/Cmla/Publications/1998/CMLA9815.ps.gz.
Cited by llremove, ml_decompose, fgrain, flst, ll_remove.

MM86
A. Mackworth and F. Mokhtarian.
Scale-based description and recognition of planar curves and two-dimensional shapes.
IEEE Trans. Pattern Analysis and Machine Intell., 8(1), 1986.
Cited by fksmooth.

MM92
A. Mackworth and F. Mokhtarian.
A theory of multiscale, curvature-based shape representation for planar curves.
IEEE Trans. Pattern Analysis and Machine Intell., 14:789-805, 1992.
Cited by fksmooth.

MM98
S. Masnou and J-M. Morel.
Image restoration involving connectedness.
In Proc. of the 6th Int. Workshop on Digital I.P. and Comp. Graphics, SPIE 3346, Vienna, Austria, 1998.
Cited by fgrain.

Moi98
L. Moisan.
Affine plane curve evolution : a fully consistent scheme.
IEEE Trans. on Image Proc., 7(3):411-420, 1998.
Cited by gcsf, gass.

Moi02
Lionel Moisan.
Modelling in image processing.
DEA Mathématiques, Vision, Apprentissage (MVA), Ecole Normale Supérieure de Cachan, 2002.
Cited by frank, bicontrast.

MS95
J-M. Morel and S. Solimini.
Variational Methods in Image Segmentation.
Birkhauser, 1995.
Cited by segct.

Pas95
D. Pasquignon.
Computation of a skeleton by partial differential equation.
In Proc. IEEE Int. Conf. on Image Processing, 1995.
Cited by skeleton.

Pas99
D. Pasquignon.
Approximation de propagation de fronts avec ou sans termes non locaux. Application à la squelettisation de formes.
PhD thesis, Université Paris IX Dauphine, France, 1999.
Cited by thinning.

PFTV88
W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling.
Numerical Recipes in C.
Cambridge University Press, 1988.
Available at http://lib-www.lanl.gov/numerical/bookcpdf.html.
Cited by fft1d, fct1d.

RO94
L. Rudin and S. Osher.
Total variation based image restoration with free local constraints.
In Proc. IEEE Int. Conf. on Image Processing, volume 1, pages 31-35, 1994.
Cited by stvrestore, tvdenoise, Swtvdenoise.

ROF92
L.I. Rudin, S. Osher, and E. Fatemi.
Nonlinear total variation based noise removal algorithms.
Physica D, 60:259-268, 1992.
Cited by stvrestore, tvdenoise, Swtvdenoise.

SB86
M.J.T. Smith and T.P. Barnwell.
Exact reconstruction techniques for tree structured subband coders.
IEEE Trans. on Acoustic, Speech and Signal Proc., 34:434-441, 1986.
Cited by owave1.

SBLP94
J-L. Starck, A. Bijaoui, B. Lopez, and C. Perrier.
Image reconstruction by the wavelet transform applied to aperture synthesis.
Astronomy ans Astrophysics, 283:349-360, 1994.
Cited by stkwave1, istkwave1.

SCD02
J-L. Starck, E. Candès, and D. Donoho.
The curvelet transform for image denoising.
IEEE Trans. on Image Proc., 11(6):670-684, 2002.
Cited by ridgpolrec, ridgelet, ridgrecpol, iridgelet.

Sha93
J. Shapiro.
Embedded image coding using zerotrees of wavelet coefficients.
IEEE Trans. on Signal Processing, 41(12):3445-3462, 1993.
Cited by Cfezw, ezw, Fezw, cfezw, fezw.

TBU99
P. Thévenaz, T. Blu, and M. Unser.
Image interpolation and resampling.
Preprint Ecole Polytechnique Fédérale de Lausanne, available at http://bigwww.epfl.ch/publications/thevenaz9901.pdf, 1999.
Cited by fcrop, finvspline.

UAE91
M. Unser, A. Aldroubi, and M. Eden.
Fast b-spline transforms for continuous image representation and interpolation.
IEEE Trans. Pattern Analysis and Machine Intell., 13(3), 1991.
Cited by fcrop, finvspline.

UAE95
M. Unser, A. Aldroubi, and M. Eden.
Enlargement or reduction of digital images with minimum loss of information.
IEEE Trans. on Image Processing, 4(3), 1995.
Cited by funzoom.

Vin93
L. Vincent.
Grayscale area openings and closings, their efficient implementation and applications.
In J. Serra and Ph. Salembrier, editors, Proc. of 1st Workshop on Math. Morphology and its Appl. to Signal Proc., pages 22-27. 1993.
Cited by fgrain.

WNC87
I.H. Witten, R.M. Neal, and J.G. Cleary.
Arithmetic coding for data compression.
Communications of the ACM, 30(6):520-540, 1987.
Cited by ezw, arencode2, ardecode2.

WS01
J. Weickert and C. Schnorr.
Variational optic flow computation with a spatio-temporal smoothness constraint.
J. of Mathematical Imaing and Vision, pages 245-255, 2001.
Cited by ws_flow.

WtHRV98
J. Weickert, B.M. ter Haar Romeny, and M.A. Viergever.
Efficient and reliable schemes for nonlinear diffusion filtering.
IEEE Trans. on Image Proc., 7:398-410, 1998.
Cited by ws_flow.


mw 2004-05-05