next up previous contents index
Next: flconcat Up: Reference Previous: fkcrop   Contents   Index

fkzrt

$ \bigcirc$Name


fkzrt Zoom, Rotate then translate IN PLACE a set of Fcurves




$ \bigcirc$Command Synopsis


fkzrt [-s] in out zoom angle x y



-s : apply first y= >  -y symmetry

in : input Fcurves

out : output Fcurves (modifed input)

zoom : zoom factor

angle : rotation angle (in degrees, counterclockwise)

x : translation vector (x coordinate)

y : translation vector (y coordinate)




$ \bigcirc$Function Summary


Fcurves fkzrt (cs , zoom , angle , x , y , sym )

Fcurves cs ;

float zoom , angle , x , y ;

char *sym ;




$ \bigcirc$Description


This module performs an Euclidean transformation (zoom, rotation and translation) on a set of Fcurves. The needed parameters are the zoom factor zoom, the rotation angle angle, and the translation vector (x, y). To each point of the original Fcurves the transformation

$\displaystyle \left(\vphantom{ \begin{array}{c} X \\  Y \end{array} }\right.$$\displaystyle \begin{array}{c} X \\  Y \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{c} X \\  Y \end{array} }\right)$     $\displaystyle \mapsto$     $\displaystyle \left(\vphantom{ \begin{array}{cc} zoom \cdot \cos(\theta) & - zo...
...
zoom \cdot \sin(\theta) & \;\;\;zoom\cdot\cos(\theta) \\  \end{array} }\right.$$\displaystyle \begin{array}{cc} zoom \cdot \cos(\theta) & - zoom \cdot\sin(\theta) \\
zoom \cdot \sin(\theta) & \;\;\;zoom\cdot\cos(\theta) \\  \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{cc} zoom \cdot \cos(\theta) & - zo...
...
zoom \cdot \sin(\theta) & \;\;\;zoom\cdot\cos(\theta) \\  \end{array} }\right)$  $\displaystyle \left(\vphantom{ \begin{array}{c} X \\  Y \end{array} }\right.$$\displaystyle \begin{array}{c} X \\  Y \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{c} X \\  Y \end{array} }\right)$   +  $\displaystyle \left(\vphantom{ \begin{array}{c} x \\  y \end{array} }\right.$$\displaystyle \begin{array}{c} x \\  y \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{c} x \\  y \end{array} }\right)$

is applied, where $\displaystyle \theta$ = angle . $\displaystyle {\frac{{\pi}}{{180}}}$.




$ \bigcirc$See Also


sr_distance, sr_normalize.


$ \bigcirc$Version 1.0


Last Modification date : Thu Nov 29 20:23:56 2001


$ \bigcirc$Author


Lionel Moisan






next up previous contents index
Next: flconcat Up: Reference Previous: fkcrop   Contents   Index
mw 2004-05-05