next up previous contents index
Next: ksplines Up: Reference Previous: fsplit_convex   Contents   Index

kspline

$ \bigcirc$Name


kspline Generate one spline-curve from one control points curve




$ \bigcirc$Command Synopsis


kspline [-j order] [-s step] cv_control_pts kspline



-j order : order of the spline (default: 3 - cubic spline-)

-s step : step between two parameter values t (default: 0.1)

cv_control_pts : set of control points (curve input)

kspline : B-spline curve (curve output)




$ \bigcirc$Function Summary


void kspline (C , Step , P , spline )

int *C ;

float *Step ;

Curve P , spline ;




$ \bigcirc$Description


This module takes a set of control points (Pi)i, given as the curve cv_control_pts, and generates one B-spline curve P (kspline) which is a smooth interpolation of the input curve:

P(t)  =  $\displaystyle \sum_{{i=1}}^{{M}}$PiNi-1, j(t)

where Ni, j is the B-spline of order j on the interval [xi, xi+1[. The order j of the spline is given by the -j option and must satisfy 2 $ \leq$ j $ \leq$ M where M is the number of control points. The higher the order j, the smoother is the interpolation curve, but the input curve is better approximated with lower order. The -s option allows to change the step for the parameter t to compute the curve P.




$ \bigcirc$Version 1.3


Last Modification date : Thu Jan 24 18:22:44 2002


$ \bigcirc$Author


Jacques Froment






next up previous contents index
Next: ksplines Up: Reference Previous: fsplit_convex   Contents   Index
mw 2004-05-05